首页> 外文期刊>Scripta materialia >Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC
【24h】

Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC

机译:钢筋体积分数对原位TiB / Ti MMC拉伸和蠕变性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

High temperature applications of titanium matrix composite (TMC) are expected to have appreciable improvements in elastic modulus, strength and physical properties than monolithic alloys[l-5]. It has been reported that the different interfacial reactions resulting from various processes or reinforcements significantly affect the mechanical and physical properties of TMC[6-91. Moreover, the breaking down of reinforcements imposed by the following thermomechanical process (TMP) also depends on the interfacial condition[10, 11]. Recently, the creep behaviors of TMC are highly concerned for applica-tions of aerospace structure, propulsion system, and power generation system. However, the creep mechanisms of TMC and relevant factors associated with activation energy, stress exponent and threshold stress are not clear in detail. For aluminum and some other alloy matrix composites, although the concept of threshold stress and stress exponent have been widely introduced to correlate the strengthening mechanism of creep, the origin of threshold stress is still not well understood. In a study of TMC reported by Ranganath et a1.[12], the values of stress exponent were measured to be excep- tionally high (6-7) due to the transition of creep mechanism from lattice to pipe diffusion at 823 K, and a kinetic strengthening term involving volume fraction of reinforcement to the constitution equa-tion of power-law creep was proposed to interpret the results that creep data cannot merge even aftercompensating for threshold stress.
机译:钛基复合材料(TMC)的高温应用有望比整体合金具有更大的弹性模量,强度和物理性能[1-5]。据报道,由各种过程或增强引起的不同界面反应会显着影响TMC的机械和物理性能[6-91。而且,由随后的热机械过程(TMP)施加的钢筋破坏也取决于界面条件[10,11]。近来,TMC的蠕变行为与航空航天结构,推进系统和发电系统的应用密切相关。但是,TMC的蠕变机理以及与活化能,应力指数和阈值应力相关的相关因素尚不清楚。对于铝和其他一些合金基复合材料,尽管已广泛引入阈值应力和应力指数的概念来关联蠕变的增强机理,但仍不能很好地理解阈值应力的起源。在Ranganath等人[1]报道的TMC研究中[12],由于在823 K下蠕变机理从晶格扩散到管道扩散,应力指数值异常高(6-7)。提出了一个动态强化项,涉及幂律蠕变的组成方程的增强体积分数,以解释即使补偿阈值应力后蠕变数据也无法合并的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号