首页> 外文期刊>Cerebral cortex >Homeostatic maintenance of neuronal excitability by burst discharges in vivo.
【24h】

Homeostatic maintenance of neuronal excitability by burst discharges in vivo.

机译:体内爆裂放电对神经元兴奋性的体内维持作用。

获取原文
获取原文并翻译 | 示例
           

摘要

Information in neuronal networks is thought to be represented by the rate of discharge and the temporal relationship between the discharging neurons. The discharge frequency of neurons is affected by their afferents and intrinsic properties, and shows great individual variability. The temporal coordination of neurons is greatly facilitated by network oscillations. In the hippocampus, population synchrony fluctuates during theta and gamma oscillations (10-100 ms scale) and can increase almost 10-fold during sharp wave bursts. Despite these large changes in excitability in the sub-second scale, longer-term (minute-scale) firing rates of individual neurons are relatively constant in an unchanging environment. As a result, mean hippocampal output remains stable over time. To understand the mechanisms responsible for this homeostasis, we address the following issues: (i) Can firing rates of single cells be modified? (ii) Once modified, what mechanism(s) can maintain the changes? We show that firing rates of hippocampal pyramidal cells can be altered in a novel environment and by Hebbian pairing of physiological input patterns with postsynaptic burst discharge. We also illustrate a competition between single spikes and the occurrence of spike bursts. Since spike-inducing (suprathreshold) inputs decrease the ability of strong ('teaching') inputs to induce a burst discharge, we propose that the single spike versus burst competition presents a homeostatic regulatory mechanism to maintain synaptic strength and, consequently, firing rate in pyramidal cells.
机译:人们认为神经元网络中的信息由放电速率和放电神经元之间的时间关系表示。神经元的放电频率受其传入和固有属性的影响,并表现出很大的个体差异性。网络振荡极大地促进了神经元的时间协调。在海马中,种群同步在θ和γ振荡(10-100毫秒尺度)期间波动,并且在剧烈波突发期间可以增加近10倍。尽管亚秒级兴奋性发生了巨大变化,但在不变的环境中,单个神经元的长期(分钟级)放电速率相对恒定。结果,平均海马输出随时间保持稳定。为了了解造成这种稳态的机制,我们解决以下问题:(i)可以改变单细胞的放电速率吗? (ii)修改后,哪些机制可以维持更改?我们表明,海马锥体细胞的放电率可以在一个新颖的环境中被改变,并且通过与输入突触后爆发放电的生理输入模式的希伯来配对。我们还说明了单个尖峰和尖峰爆发之间的竞争。由于尖峰诱导(超阈值)输入会降低强(“教学”)输入引起突发放电的能力,因此我们建议单尖峰与突发竞争提供了一种稳态调节机制来维持突触强度,从而保持了射速。锥体细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号