首页> 外文期刊>Sadhana: Academy Proceedings in Engineering Science >Mathematical modelling of dropwise condensation on textured surfaces
【24h】

Mathematical modelling of dropwise condensation on textured surfaces

机译:织构表面上的逐滴冷凝的数学模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Vapor-to-liquid phase change in the form of discrete drops on or underneath a substrate is called dropwise condensation. The process is hierarchical in the sense that it occurs over a wide range of length and timescales. As the associated heat transfer coefficient is much higher than the film and mixed mode of condensation, it is of considerable interest in applications. The present study is focused on mathematical modelling of dropwise condensation process at multiple scales. The model includes formation of drops at the atomistic scale, droplet growth, coalescence, instability, slide off and fall-off, followed by fresh nucleation of liquid droplets. The model shows that the largest stable cluster size in the atomic model matches the minimum drop radius estimated from thermodynamic considerations. The minimum drop radius is insensitive to surface texturing and does not provide controllability at larger length and timescales. A closer examination of droplet distribution over the substrate reveals that small drops are locations of high heat transfer rates, which diminishes with increasing drop radius. The largest drop diameter depends on its stability and hence, the interfacial forces at phase boundaries. Therefore, drop instability controls the heat transfer coefficient in dropwise condensation. Enhancement of heat transfer necessitates that these drops grow with time, become unstable and be swept away as quickly as possible. Enhancement may be achieved either by (i) inclining the substrate or (ii) by creating an interfacial force at the three-phase contact line by a wettability gradient over the horizontal substrate, inducing drop motion. Wall heat transfer and shear stress under moving drops have been determined using a CFD model. A simple model of coalescence has been adopted in this work. Simulation studies on the effect of fluid properties, surface inclination and its wettability condition on drop size distribution, cycle time, heat transfer coefficient, and wall shear stress are comprehensively discussed in the present article.
机译:以基质上或基质以下的离散液滴形式出现的汽-液相变化称为逐滴冷凝。从某种意义上说,该过程是分层的,它发生在很宽的长度和时间范围内。由于相关的传热系数远高于薄膜和冷凝的混合模式,因此在应用中引起了极大的兴趣。本研究的重点是在多个尺度上逐滴冷凝过程的数学模型。该模型包括在原子尺度上形成液滴,液滴生长,聚结,不稳定性,滑落和掉落,然后是液滴的新形核。该模型显示,原子模型中最大的稳定簇尺寸与根据热力学考虑估计的最小液滴半径相匹配。最小墨滴半径对表面纹理不敏感,在较大的长度和时间范围内不提供可控性。仔细检查基材上的液滴分布可发现,小液滴是高传热率的位置,随着传热半径的增加,传热速率逐渐减小。最大的液滴直径取决于其稳定性,因此取决于相边界处的界面力。因此,液滴的不稳定性控制了液滴凝结时的传热系数。传热的增强需要这些液滴随时间增长,变得不稳定并被尽快清除。增强可以通过以下方式实现:(i)倾斜基板,或者(ii)通过在水平基板上的润湿性梯度在三相接触线上产生界面力,从而引起下落运动。已经使用CFD模型确定了运动液滴下的壁传热和切应力。在这项工作中采用了一个简单的合并模型。本文全面讨论了流体性质,表面倾角及其润湿性条件对液滴尺寸分布,循环时间,传热系数和壁切应力的影响的仿真研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号