...
首页> 外文期刊>Science and Technology for the Built Environment >Modeling infection risk and energy use of upper-room Ultraviolet Germicidal Irradiation systems in multi-room environments
【24h】

Modeling infection risk and energy use of upper-room Ultraviolet Germicidal Irradiation systems in multi-room environments

机译:在多房间环境中对上部房间紫外线杀菌剂辐照系统的感染风险和能量使用进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

The effectiveness of ultraviolet irradiation at inactivating airborne pathogens is well proven, and the technology is also commonly promoted as an energy-efficient way of reducing infection risk in comparison to increasing ventilation. However, determining how and where to apply upper-room Ultraviolet Germicidal Irradiation devices for the greatest benefit is still poorly understood. This article links multi-zone infection risk models with energy calculations to assess the potential impact of a Ultraviolet Germicidal Irradiation installation across a series of inter-connected spaces, such as a hospital ward. A first-order decay model of ultraviolet inactivation is coupled with a room air model to simulate patient room and whole-ward level disinfection under different mixing and ultraviolet field conditions. Steady-state computation of quanta-concentrations is applied to the Wells-Riley equation to predict likely infection rates. Simulation of a hypothetical ward demonstrates the relative influence of different design factors for susceptible patients co-located with an infectious source or in nearby rooms. In each case, energy requirements are calculated and compared to achieving the same level of infection risk through improved ventilation. Ultraviolet devices are seen to be most effective where they are located close to the infectious source; however, when the location of the infectious source is not known, locating devices in patient rooms is likely to be more effective than installing them in connecting corridor or communal zones. Results show an ultraviolet system may be an energy-efficient solution to controlling airborne infection, particularly in semi-open hospital environments, and considering the whole ward rather than just a single room at the design stage is likely to lead to a more robust solution.
机译:紫外线辐照可灭活空气中的病原体的有效性已得到充分证明,与提高通风量相比,该技术还被普遍认为是降低感染风险的节能方式。然而,仍然难以确定如何以及在何处应用上层紫外线杀菌剂辐照设备以取得最大的收益。本文将多区域感染风险模型与能量计算联系起来,以评估紫外线杀菌剂辐照装置对一系列相互连接的空间(例如医院病房)的潜在影响。紫外线灭活的一阶衰减模型与室内空气模型耦合,以模拟在不同混合和紫外线场条件下的病房和整个病房的消毒水平。量子浓度的稳态计算被应用到Wells-Riley方程中,以预测可能的感染率。假设病房的仿真表明,不同设计因素对易感患者与传染源位于同一地点或在附近房间中的相对影响。在每种情况下,都需要计算能量需求,并将其与通过改善通风来达到相同水平的感染风险进行比较。紫外线设备在靠近传染源的地方被认为是最有效的。但是,当不知道传染源的位置时,在病房中放置设备可能比在连接走廊或公共区域中安装设备更有效。结果表明,紫外线系统可能是控制空气传播感染的节能解决方案,尤其是在半开放式医院环境中,并且在设计阶段考虑整个病房而不是仅一个房间的情况可能会导致更健壮的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号