首页> 外文期刊>Cardiovascular engineering and technology >Experimentally Validated Hemodynamics Simulations of Mechanical Heart Valves in Three Dimensions
【24h】

Experimentally Validated Hemodynamics Simulations of Mechanical Heart Valves in Three Dimensions

机译:机械心脏瓣膜三维三维实验验证的血流动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanical heart valves (MHV) have been widely deployed as a routine surgical treatment option for patients with heart valve diseases due to its durability and performance. Understanding hemodynamics of MHV plays a key role in performance assessment as well as design. In this work, we propose a numerical method for simulations of full three dimensional MHV with moving valve leaflets in a typical human cardiac cycle. A cell-centered finite volume method is employed to model incompressible flows in MHV. As the flow experiences from laminar to turbulence over every cardiac cycle, the unsteady Reynolds average Navier-Stokes (URANS) equations is solved with κ-ε and Spalart-Allmaras turbulence models to resolve large scaled turbulent eddies in high Reynolds number flow regimes. URANS approach chosen for the balance of turbulence resolution and computational cost shows good agreement with more detailed turbulence models as well as experimental data. For capturing the large amplitude movement of the valves, we develop an optimization-based moving mesh technique with objective functions operating on different mesh quality metrics. The method is capable of extensively providing an effective way to maintain and improve the mesh quality due to large movement of domain boundaries. The numerical results for laminar and turbulent flows are validated against experimental data using Particle Image Velocimetry technique. The simulation is able to capture essential features of flows in MHV. The triple jet structure is observed in the simulations together with a switching of central orifice jet flow from horizontal axis to vertical axis downstream of the leaflets and the results are well compared with the experimental data. The moving mesh technique has enabled us to simulate a whole cardiac cycle with pulsatile physiological conditions and prescribed motions of the leaflets. The simulations can essentially reproduce the varying pressure profiles at the left ventricle and aorta. The wall shear stress and vorticity can then be deduced from the simulation results to further access the valve performance. This study also constitutes an important step towards understanding hemodynamics in MHV and contributing to the advancement in study of improved MHV.
机译:机械心脏瓣膜(MHV)由于其耐用性和性能而被广泛用作患有心脏瓣膜疾病的患者的常规外科治疗选择。了解MHV的血液动力学在性能评估和设计中起着关键作用。在这项工作中,我们提出了一种数值方法,用于在典型的人心脏周期中模拟带有活动瓣叶的完整三维MHV。以单元为中心的有限体积方法被用来模拟MHV中不可压缩的流动。随着在每个心动周期中从层流到湍流的流动,使用κ-ε和Spalart-Allmaras湍流模型求解不稳定的雷诺平均Navier-Stokes(URANS)方程,以解决高雷诺数流态下的大规模湍流。为平衡湍流分辨率和计算成本而选择的URANS方法与更详细的湍流模型以及实验数据显示出良好的一致性。为了捕获阀门的大幅度运动,我们开发了一种基于优化的移动网格技术,其目标函数在不同的网格质量度量标准下运行。由于域边界的大运动,该方法能够广泛地提供维持和改善网格质量的有效方式。使用粒子图像测速技术,针对实验数据验证了层流和湍流的数值结果。该仿真能够捕获MHV中流的基本特征。在模拟中观察到三重射流结构,同时在小叶的下游将中心孔口射流从水平轴转换为垂直轴,并且与实验数据进行了很好的比较。移动网格技术使我们能够模拟具有脉动生理状况和小叶规定运动的整个心动周期。该模拟基本上可以再现左心室和主动脉的压力变化曲线。然后可以从模拟结果中得出壁面剪应力和涡度,以进一步获得阀门性能。这项研究也为了解MHV的血流动力学和促进改良MHV的研究发展迈出了重要的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号