首页> 外文期刊>Molecular Microbiology >Of blood, brains and bacteria, the Amt/Rh transporter family: emerging role of Amt as a unique microbial sensor.
【24h】

Of blood, brains and bacteria, the Amt/Rh transporter family: emerging role of Amt as a unique microbial sensor.

机译:Amt / Rh转运蛋白家族涉及血液,大脑和细菌:Amt作为一种独特的微生物传感器正在崭露头角。

获取原文
获取原文并翻译 | 示例
           

摘要

Members of the Amt/Rh family of transporters are found almost ubiquitously in all forms of life. However, the molecular state of the substrate (NH(3) or NH(4)(+)) has been the subject of active debate. At least for bacterial Amt proteins, the model emerging from computational, X-ray crystal and mutational analysis is that NH(4)(+) is deprotonated at the exterior, conducted through the membrane as NH(3), and reprotonated at the cytoplasmic interface. A proton concomitantly is transferred from the exterior to the interior, although the mechanism is unclear. Here we discuss recent evidence indicating that an important function of at least some eukaryotic and bacterial Amts is to act as ammonium sensors and regulate cellular metabolism in response to changes in external ammonium concentrations. This is now well documented in the regulation of yeast pseudohyphal development and filamentous growth. As well, membrane sequestration of GlnK, a PII signal transduction protein, by AmtB has been shown to regulate nitrogenase in some diazotrophs, and nitrogen metabolism in some gram-positive bacteria. Formation of GlnK-AmtB membrane complexes might have other, as yet undiscovered, regulatory roles. This possibility is emphasized by the discovery in some genomes of genes for chimeric Amts with fusions to various regulatory elements.
机译:Amt / Rh转运蛋白家族的成员几乎遍及所有形式的生活中。但是,底物(NH(3)或NH(4)(+))的分子状态一直是活跃的辩论主题。至少对于细菌Amt蛋白而言,从计算,X射线晶体和突变分析中得出的模型是,NH(4)(+)在外部去质子化,通过膜作为NH(3)传导,并在细胞质中质子化接口。质子从外部转移到内部,尽管机理尚不清楚。在这里,我们讨论最近的证据,这些证据表明至少一些真核生物和细菌Amts的重要功能是充当铵传感器并调节细胞代谢,以响应外部铵浓度的变化。现在在酵母假菌丝发育和丝状生长的调节中有充分的证明。同样,通过AmtB隔离GIIK(一种PII信号转导蛋白)的膜螯合已显示出调节某些重氮营养菌中的固氮酶和调节某些革兰氏阳性细菌中的氮代谢的作用。 GlnK-AmtB膜复合物的形成可能还具有其他但尚未发现的调控作用。通过在一些基因组中发现与多种调控元件融合的嵌合Amts的基因,强调了这种可能性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号