首页> 外文期刊>Schizophrenia research >Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A 'central hub' in schizophrenia pathophysiology?
【24h】

Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A 'central hub' in schizophrenia pathophysiology?

机译:氧化还原异常,神经炎症和NMDA受体功能低下:精神分裂症病理生理学的“中心枢纽”?

获取原文
获取原文并翻译 | 示例
           

摘要

Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease. (C) 2014 Elsevier B.V. All rights reserved.
机译:越来越多的证据表明,精神分裂症患者的GABA能小白蛋白表达中间神经元发生改变,髓磷脂/轴突完整性受损。这两个发现可能归因于异常的神经发育轨迹,影响了局部神经元网络和长期同步性,并导致认知缺陷。在这篇综述中,我们提供了来自动物模型的数据,这些数据表明氧化还原异常,神经炎症和/或NMDAR功能低下(如在患者中观察到的)损害了小白蛋白中间神经元和少突胶质细胞的正常发育。这些观察结果表明,由于遗传和生命早期环境风险因素,氧化还原,神经免疫和谷氨酸能系统的失调可能导致精神分裂症中小白蛋白中间神经元和白质异常,最终通过以下方式影响认知,社交能力和情感行为:微电路和宏电路的异常功能。此外,我们建议氧化还原,神经免疫和谷氨酸能系统形成一个“中心枢纽”,在这些“枢纽”系统中的任何一个不平衡都会导致小白蛋白中间神经元和少突胶质细胞出现类似的异常,这是由于它们之间存在紧密的相互作用系统。这些系统中有多个系统中的失调漏洞的组合可能特别有害。由于这些原因,具有抗氧化和抗炎特性并且还可以调节谷氨酸能传递的分子,例如N-乙酰半胱氨酸,对于预防超高风险患者或在疾病的早期阶段进行早期干预治疗是很有前途的工具。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号