...
首页> 外文期刊>Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration >The mechanics of hydrothermal systems: II. Fluid mixing and chemical reactions
【24h】

The mechanics of hydrothermal systems: II. Fluid mixing and chemical reactions

机译:热液系统的力学:II。流体混合和化学反应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the accompanying paper, Part I, hydrothermal mineralising systems are considered as open chemical reactors that operate far from equilibrium to develop an exothermal alteration system with veining and brecciation, followed by competition between endothermic mineralisation and exothermic mineral reactions. In this sequel paper, we examine the interplay of these processes with fluid transport and the impact upon mineral deposition. Chemical reaction and flow in porous media admit two distinct mechanisms which result in significantly accelerated mixing. First, gradients in physical parameters such as chemical potential, fluid density and surface tension generate flow instabilities which form fluid/chemical mixing machines that propagate with the reaction front. Second, so-called chaotic advection, a behaviour in which fluid particles follow chaotic trajectories, arises inherently from Stokes flow in open porous networks as a result of the complexity of the pore geometry. For pore length-scales greater than 1 mm, these mechanisms significantly enhance mixing and hence metal/sulphide deposition. Furthermore, chaotic advection can also alter qualitative characteristics such as stability or speciation of non-equilibrium chemical reactions, with significant implications for enhanced mineralisation rates. Such interactions between chemical reaction and fluid advection generate mineral deposits with multifractal spatial signatures similar to those observed in the field. Such multifractal signatures render the spatial distributions non-ergodic, a fact which process based geostatistics must take into account.
机译:在随附的论文第I部分中,热液成矿系统被认为是开放化学反应器,其运行远离平衡状态,以发展出具有脉状和水化现象的放热蚀变系统,随后是吸热矿化和放热矿物质反应之间的竞争。在此续篇论文中,我们研究了这些过程与流体传输之间的相互作用以及对矿物沉积的影响。多孔介质中的化学反应和流动具有两种截然不同的机理,它们导致了显着加速的混合。首先,物理参数(例如化学势,流体密度和表面张力)中的梯度会产生流动不稳定性,从而形成随反应前沿扩散的流体/化学混合机。其次,由于孔隙几何形状的复杂性,所谓的“对流平流”(即流体粒子遵循混沌轨迹的行为)固有地源自开放式多孔网络中的斯托克斯流。对于大于1 mm的孔径尺度,这些机理显着增强了混合,从而增强了金属/硫化物的沉积。此外,混沌对流还可以改变定性特征,例如稳定性或非平衡化学反应的形态,这对提高矿化速率具有重要意义。化学反应和流体对流之间的这种相互作用会产生具有多分形空间特征的矿床,其特征与现场观察到的相似。这种多重分形特征使空间分布不符合人体工程学,这是基于过程的地统计学必须考虑的事实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号