...
首页> 外文期刊>Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration >Prospectivity of Western Australian iron ore from geophysical data using a reject option classifier
【24h】

Prospectivity of Western Australian iron ore from geophysical data using a reject option classifier

机译:使用拒绝选项分类器从地球物理数据看西澳大利亚铁矿石的前景

获取原文
获取原文并翻译 | 示例
           

摘要

There has recently been a rapid growth in the amount and quality of digital geological and geophysical data for the majority of the Australian continent. Coupled with an increase in computational power and the rising importance of computational methods, there are new possibilities for a large scale, low expenditure digital exploration of mineral deposits. Here we use a multivariate analysis of geophysical datasets to develop a methodology that utilises machine learning algorithms to build and train two-class classifiers for provincial-scale, greenfield mineral exploration. We use iron ore in Western Australia as a case study, and our selected classifier, a mixture of a Gaussian classifier with reject option, successfully identifies 88% of iron ore locations, and 92% of non-iron ore locations. Parameter optimisation allows the user to choose the suite of variables or parameters, such as classifier and degree of dimensionality reduction, that provide the best classification result. We use randomised hold-out to ensure the generalisation of our classifier, and test it against known ground-truth information to demonstrate its ability to detect iron ore and non-iron ore locations. Our classification strategy is based on the heterogeneous nature of the data, where a well-defined target "iron-ore" class is to be separated from a poorly defined non-target class. We apply a classifier with reject option to known data to create a discriminant function that best separates sampled data, while simultaneously "protecting" against new unseen data by "closing" the domain in feature space occupied by the target class. This shows a substantial 4% improvement in classification performance. Our predictive confidence maps successfully identify known areas of iron ore deposits through the Yilgarn Craton, an area that is not heavily sampled in training, as well as suggesting areas for further exploration throughout the Yilgarn Craton. These areas tend to be more concentrated in the north and west of the Yilgarn Craton, such as around the Twin Peaks mine (similar to 27 degrees S, 116 degrees E) and a series of lineaments running east-west at similar to 25 degrees S. Within the Pilbara Craton, potential areas for further expansion occur throughout the Marble Bar vicinity between the existing Spinifex Ridge and Abydos mines (21 degrees S, 119-121 degrees E), as well as small, isolated areas north of the Hamersley Group at similar to 21.5 degrees S, similar to 118 degrees E. We also test the usefulness of radiometric data for province-scale iron ore exploration, while our selected classifier makes no use of the radiometric data, we demonstrate that there is no performance penalty from including redundant data and features, suggesting that where possible all potentially pertinent data should be included within a data-driven analysis. This methodology lends itself to large scale, reconnaissance mineral explorations, and, through varying the datasets used and the commodity being targeted, predictive confidence maps for a wide range of minerals can be produced. (C) 2015 Elsevier B.V. All rights reserved,
机译:最近,澳大利亚大陆大部分地区的数字地质和地球物理数据的数量和质量迅速增长。伴随着计算能力的提高和计算方法重要性的不断提高,对于矿藏进行大规模,低费用的数字化勘探具有了新的可能性。在这里,我们使用地球物理数据集的多元分析来开发一种方法,该方法利用机器学习算法来构建和训练用于省级,未开发矿产勘探的两类分类器。我们以西澳大利亚州的铁矿石为案例研究,我们选择的分类器(结合了高斯分类器和拒绝选项)成功识别了88%的铁矿石位置和92%的非铁矿石位置。参数优化允许用户选择提供最佳分类结果的一组变量或参数,例如分类器和降维度。我们使用随机保留来确保分类器的通用性,并根据已知的地面信息对它进行测试,以证明其检测铁矿石和非铁矿石位置的能力。我们的分类策略基于数据的异质性,其中将定义明确的目标“铁矿石”类别与定义不明确的非目标类别分开。我们将带有拒绝选项的分类器应用于已知数据,以创建最能区分采样数据的判别函数,同时通过“封闭”目标类所占据的特征空间中的域来“保护”免受新的看不见的数据。这表明分类性能提高了4%。我们的预测置信度图通过Yilgarn Craton成功地识别了铁矿石矿床的已知区域(该区域在培训中并未大量采样),并为整个Yilgarn Craton的进一步勘探提供了建议区域。这些地区往往更集中在Yilgarn Craton的北部和西部,例如在Twin Peaks矿附近(类似于27度,116度),以及一系列东西向,类似于25度南的东西。在Pilbara Craton内部,可能存在进一步扩张的区域,遍及现有Spinifex Ridge和Abydos矿山之间的大理石柱附近(南纬21度,东经119-121度),以及位于哈默斯利集团以北的小而孤立的地区类似于21.5度S,类似于118度E。我们还测试了辐射数据对省级铁矿石勘探的有用性,虽然我们选择的分类器没有使用辐射数据,但我们证明,包括冗余数据和功能,建议在所有可能的相关数据中都应包括在数据驱动的分析中。这种方法适用于大规模的勘查性矿物勘探,并且通过改变所使用的数据集和所针对的商品,可以生成各种矿物的预测置信度图。 (C)2015 Elsevier B.V.保留所有权利,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号