...
首页> 外文期刊>Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration >Chamosite, siderite and the environmental conditions of their formation in chamosite-type Phanerozoic ooidal ironstones
【24h】

Chamosite, siderite and the environmental conditions of their formation in chamosite-type Phanerozoic ooidal ironstones

机译:硅铁矿型杂多屑型椭圆铁矿中的硅铁矿,菱铁矿及其形成的环境条件

获取原文
获取原文并翻译 | 示例
           

摘要

Two characteristic ironstone minerals occurring in chamosite-type ironstone deposits were investigated. These are the minerals of the chlorite and the carbonate series. The samples are from 31 localities and 8 countries (Czech Republic, France, Germany, United Kingdom, Egypt, Nigeria and USA); these deposits are identical to those presented by Mucke and Farshad [Mucke, A., Farshad, F. (in press). Whole-rock and mineralogical composition of Phanerozoic ooidal ironstones: Comparison and differentiation of subtypes. Ore Geology Reviews] with Ordovician to Late Cretaceous ages. Electron microprobe analyses of 197 carbonates and 64 chlorites were carried out. The analytical points of the carbonates in a [magnesite-calcite-(siderite+rhodochrosite)=100 mol. percent]-diagram are distributed within a limited area close to the siderite end-member. The area can be subdivided into two fields: 1. The carbonates of the Ordovician ironstones of the Welsh, Prague, and Thuringian basins have high siderite concentrations (87.1 to 90.6 mol. percent), magnesite contents from 6.7 to 8.3 mol. percent and calcite concentrations from 1.6 to 2.4 mol. percent. In the Ordovician ironstone of Krusna hora, Prague Basin, the siderite-concentrations are lower (78.3 mol. percent) and those of magnesite (15.6 mol. percent) and calcite (5.7 mol. percent) are higher. 2. The carbonates of the other ironstones (Jurassic to Late Cretaceous) have lower siderite (72.5 to 79 mol. percent) and higher magnesite (12.6 to 15.7 mol. percent) and calcite (6.9 to 12.2 mol. percent) contents. The average values of the rhodochrosite end-member lie in the range between 0.13 and 2.31 mol. percent and the siderite: rhodochrosite-ratio = 158 (on average). The analytical points of the chlorite analyses are presented in the (Fe_(tot)-Mg-Al~(VI)=100 atom. percent)-diagram. One field, containing exclusively chlorites with green internal reflections can be subdivided into two areas: one area contains the chlorites of the Ordovician ironstones (consisting of: 62.8 to 77.7 atom. percent Fe_(tot), 17.5 to 30.9 atom. percent Al~(VI), and 4.1 to 7.4 atom. percent Mg) and the other those of the Jurassic to Late Cretaceous ironstones (consisting of: 55.7 to 62.5 atom. percent Fe_(tot), 26 to 33.8 atom. percent Al~(VI), and 9 to 13 atom. percent Mg). The second field contains altered chlorites of ferruginized ironstones (Aswan and Red Mountain Formation). These chlorites present brown internal reflections, and have compositions (34.9 to 46.7 atom. percent Fe_(tot), 24.8 to 42.2 atom. percent Al~(VI), and 16.0 to 28.5 atom. percent Mg) that do not reflect the original diagenetic environment. Within the [Al/(Al+Fe+Mg)]-[Mg/(Mg+Fe)]-atom. percent diagram the chlorite analyses are concentrated in a limited field, which is distinctly separated from chlorites formed in other environments. The occurrence of carbonate and chlorite (both with slightly varying compositions), dominated by their iron-end members, which occur characteristically in association with framboidal pyrite and organic matter, are indications that three prerequisites for the formation of the ironstones are comparable in narrow limits. These are: 1. the composition of the protoliths, 2. the depositional environment of the protoliths and their rates of deposition, and 3. the environmental conditions that occurred during the lithification of the protoliths due to submarine diagenesis. The protoliths consist of mixtures of kaolinite, Fe~(3+)-oxide/hydroxide and organic matter; the depositional environments are marine basins in which fully marine conditions occur and thus the availability of Mg and Ca (not contained in the protoliths) exists. The rates of deposition control the amount of Mg (in the chlorite_(ss)) and that of Mg and Ca (in the carbonate_(ss)); and the environmental conditions during submarine diagenesis depend on the availability of organic matter creating reducing conditions due to bacterial oxidation. The resulting co
机译:研究了在准铁矿型铁矿石矿床中发现的两种特征性铁矿石矿物。这些是亚氯酸盐和碳酸盐系列的矿物。样本来自31个地区和8个国家(捷克共和国,法国,德国,英国,埃及,尼日利亚和美国);这些沉积物与Mucke和Farshad [Mucke,A.,Farshad,F.(印刷中)提出的沉积物相同。代生代卵形铁矿的全岩石和矿物学组成:亚型的比较和区分。 [矿石地质评论]与奥陶纪到白垩纪晚期。对197种碳酸盐和64种亚氯酸盐进行了电子探针分析。 [菱镁矿-方解石-(菱铁矿+菱锰矿)]中碳酸盐的分析点= 100摩尔。图]分布在靠近菱铁矿端部件的有限区域内。该地区可分为两个领域:1.威尔士,布拉格和图林根盆地的奥陶纪铁矿石的碳酸盐具有较高的菱铁矿浓度(87.1至90.6摩尔%),菱镁矿含量为6.7至8.3摩尔。百分比和方解石浓度从1.6到2.4摩尔。百分。在布拉格盆地Krusna hora的奥陶纪铁矿石中,菱铁矿含量较低(78.3摩尔%),菱镁矿含量(15.6摩尔%)和方解石含量(5.7摩尔%)更高。 2.其他铁矿石(侏罗纪至晚白垩世)的碳酸盐具有较低的菱铁矿(72.5至79摩尔%)和较高的菱镁矿(12.6至15.7摩尔%)和方解石(6.9至12.2摩尔%)含量。菱锰矿末端成员的平均值在0.13和2.31mol之间的范围内。百分比和菱铁矿:菱锰矿比率= 158(平均)。亚氯酸盐分析的分析点以(Fe_(tot)-Mg-Al〜(VI)= 100原子%)图表示。一个区域仅包含具有绿色内部反射的绿泥石,可细分为两个区域:一个区域包含奥陶纪铁矿石的绿泥石(由62.8至77.7原子百分比的Fe_(tot),17.5至30.9原子百分比的Al〜( VI)和4.1至7.4原子百分比的Mg)和其他侏罗纪至晚白垩纪的铁矿(由55.7至62.5原子百分比的Fe_(tot),26至33.8原子百分比的Al〜(VI),和9至13原子百分比的Mg)。第二个字段包含经过更改的亚铁酸盐的亚铁盐铁矿(阿斯旺和红山组)。这些亚氯酸盐呈现出棕色的内部反射,并具有不能反映原始成岩作用的成分(34.9至46.7原子百分比的Fe_(tot),24.8至42.2原子百分比的Al〜(VI)和16.0至28.5原子百分比的Mg)。环境。在[Al /(Al + Fe + Mg)]-[Mg /(Mg + Fe)]原子内。百分比图亚氯酸盐分析集中在一个有限的区域,与其他环境中形成的亚氯酸盐明显不同。碳酸盐和绿泥石(两者的成分略有变化)的发生,以它们的铁末端元素为主,通常与黄铁矿黄铁矿和有机物有关,这表明形成铁矿石的三个先决条件在狭窄的范围内是可比的。它们是:1.原石的组成,2.原石的沉积环境及其沉积速率,以及3.由于海底成岩作用,在原石的石化过程中发生的环境条件。原石由高岭石,Fe〜(3 +)-氧化物/氢氧化物和有机物的混合物组成。沉积环境是在海盆中发生的完全海洋条件,因此存在镁和钙(不包含在原石中)的可用性。沉积速率控制着Mg(在亚氯酸盐中)和Mg和Ca(在碳酸盐中(ss))的量;潜水艇成岩过程中的环境条件取决于有机物的可用性,这些有机物会由于细菌氧化而产生还原条件。由此产生的合作

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号