...
首页> 外文期刊>Organic Geochemistry: A Publication of the International Association of Geochemistry and Cosmochemistry >Experimental study of the effects of thermochemical sulfate reduction on low molecular weight hydrocarbons in confined systems and its geochemical implications
【24h】

Experimental study of the effects of thermochemical sulfate reduction on low molecular weight hydrocarbons in confined systems and its geochemical implications

机译:硫酸盐热化学还原法对密闭系统中低分子量碳氢化合物的影响及其地球化学意义的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Experimental studies of the effects of thermochemical sulfate reduction (TSR) on light hydrocarbons were conducted in sealed gold tubes for 72h at 400°C and 50MPa. A variety of pyrolysis experiments were carried out, including anhydrous, hydrous without MgSO_4 (hydrous experiments) and hydrous with MgSO_4 (TSR experiments). Common reservoir minerals including montmorillonite, illite, calcite and quartz were added to various experiments. Measurements of the quantities of n-C_(9+) normal alkanes (high molecular weight, HMW), n-C_(6-8) normal alkanes (low molecular weight, LMW), C_(7-8) isoalkanes, C_(6-7) cycloalkanes and C_(6-9) monoaromatics and compound specific carbon isotope analyses were made. The results indicate that TSR decreases hydrocarbon thermal stability significantly as indicated by chemically lower concentrations and isotopically heavier LMW saturated hydrocarbons in the TSR experiments compared to the hydrous and anhydrous experiments. In the LMW saturated hydrocarbon fraction, cycloalkanes tend to be more resistant to TSR than n-alkanes and isoalkanes. TSR promotes aromatization reactions and favors the generation of monoaromatics, resulting in higher chemical concentrations and isotopically equivalent compositions of monoaromatics in the anhydrous, hydrous and TSR experiments. This indicates that LMW monoaromatics are thermally stable during the pyrolysis experiments. Acid rather than basic catalyzed ionic reactions probably play a major role in TSR. This is suggested by the promotion effects of acid-clay minerals including illite and particularly montmorillonite. The basic mineral calcite retards the destruction of n-C_(9+) normal alkanes within the TSR experiments. Furthermore, clay minerals have a minor influence on the generation of LMW monoaromatics and play a negative role in regulating the concentrations of LMW saturated hydrocarbons; calcite does not favor the generation of LMW monoaromatics and plays a positive role in controlling the concentrations of LMW saturates relative to clay minerals. Quartz has a negligible role in the TSR experiments.Due to their differential responses to TSR, LMW hydrocarbon parameters, such as Schaefer [Schaefer, R.G., Littke, R., 1988. Maturity-related compositional changes in the low-molecular-weight hydrocarbon fraction of Toarcian Shale. Organic Geochemistry 13, 887-892], Thompson [Thompson, K.F.M., 1988. Gas-condensate migration and oil fractionation in deltaic systems. Marine and Petroleum Geology 5, 237-246], Halpern [Halpern, H., 1995. Development and application of light-hydrocarbon-based star diagrams. American Association of Petroleum Geologists Bulletin 79, 801-815] and Mango [Mango, F.D., 1997. The light hydrocarbons in petroleum: a critical review. Organic Geochemistry 26, 417-440] parameters and stable carbon isotopic compositions of individual LMW saturated hydrocarbons in TSR affected oils should be used with caution. In addition, water promotes thermal cracking of n-C_(9+) normal alkanes and favors the generation of LMW cycloalkanes and monoaromatics. The result is lower concentrations of n-C_(9+) HMW normal alkanes and higher concentrations of LMW cycloalkanes and monoaromatics in hydrous experiments relative to anhydrous experiments with or without minerals.This investigation provides a better understanding of the effects of TSR on LMW hydrocarbons and the influence of reservoir minerals on TSR in natural systems. The paper shows how LMW hydrocarbon indicators in TSR altered oils improve understanding of the processes of hydrocarbon generation, migration and secondary alteration in subsurface petroleum reservoirs.
机译:在密封的金管中于400°C和50MPa下进行了72h的热化学硫酸盐还原(TSR)对轻烃影响的实验研究。进行了各种热解实验,包括无水,无MgSO_4的含水(含水实验)和有MgSO_4的含水(TSR实验)。包括蒙脱石,伊利石,方解石和石英在内的常见储层矿物已添加到各种实验中。 n-C_(9+)正构烷烃(高分子量,HMW),n-C_(6-8)正构烷烃(低分子量,LMW),C_(7-8)异烷烃,C_(进行了6-7)环烷烃和C_(6-9)单芳烃以及化合物特定的碳同位素分析。结果表明,与含水和无水实验相比,TSR实验中的化学较低浓度和同位素较重的LMW饱和烃表明,TSR显着降低了烃的热稳定性。在LMW饱和烃馏分中,环烷烃比T-烷烃和异烷烃对TSR的耐受性更高。 TSR促进芳构化反应并促进单芳烃的生成,从而在无水,含水和TSR实验中产生更高的化学浓度和单芳烃的同位素当量组成。这表明LMW单芳族化合物在热解实验期间是热稳定的。酸而不是碱性催化的离子反应可能在TSR中起主要作用。酸性粘土矿物(包括伊利石,尤其是蒙脱石)的促进作用表明了这一点。在TSR实验中,碱性方解石矿物可阻止n-C_(9+)正构烷烃的破坏。此外,粘土矿物对LMW单芳烃的生成影响较小,并且在调节LMW饱和烃浓度方面起负面作用。方解石不利于LMW单芳烃的生成,并且在控制相对于粘土矿物的LMW饱和物浓度方面起着积极作用。石英在TSR实验中的作用可忽略不计。由于它们对TSR的不同响应,LMW烃参数,例如Schaefer [Schaefer [Schaefer,RG,Littke,R.,1988。低分子量烃中与成熟度有关的组成变化ar片页岩的一部分。 Thompson [Thompson,K.F.M.,1988年,有机地球化学13,887-892]。三角洲系统中的凝析气运移和油分馏。海洋与石油地质5,237-246],Halpern [Halpern,H.,1995。基于轻烃的星图的开发和应用。美国石油地质学家协会公告79,801-815]和Mango [Mango,F.D.,1997。石油中的轻烃:重要评论。应谨慎使用受TSR影响的油中的各个LMW饱和烃的有机地球化学26,417-440]参数和稳定的碳同位素组成。另外,水促进n-C_(9+)正构烷烃的热裂解,并促进LMW环烷烃和单芳烃的生成。相对于有或没有矿物的无水实验,含水实验中n-C_(9+)HMW正构烷烃的浓度较低,而LMW环烷烃和单芳烃的浓度较高,从而为TSR对LMW烃的影响提供了更好的理解。以及储层矿物对自然系统中TSR的影响。本文显示了TSR改质油中的LMW烃指示剂如何增进对地下石油储层中烃生成,运移和二次蚀变过程的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号