首页> 外文期刊>Optimal Control Applications and Methods >On fusion of PCA and a physical model-based predictive control strategy for efficient load-cycling operation of a thermal power plant
【24h】

On fusion of PCA and a physical model-based predictive control strategy for efficient load-cycling operation of a thermal power plant

机译:基于PCA和基于物理模型的预测控制策略的融合,用于火力发电厂的有效负荷循环运行

获取原文
获取原文并翻译 | 示例
           

摘要

Controlling a thermal power plant optimally during load-cycling operation is a very challenging control problem. The control complexity is enhanced further by the possibility of simultaneous occurrence of sensor malfunctions and a plethora of system disturbances. This paper proposes and evaluates the effectiveness of a sensor validation and reconstruction approach using principal component analysis (PCA) in conjunction with a physical plant model. For optimal control under severe operating conditions in the presence of possible sensor malfunctions, a predictive control strategy is devised by appropriate fusion of the PCA-based sensor validation and reconstruction approach and a constrained model predictive control (MPC) technique. As a case study, the control strategy is applied for thermal power plant control in the presence of a single sensor malfunction. In particular, it is applied to investigate the effectiveness and relative advantage of applying rate constraints on main steam temperature and heat-exchanger tube-wall temperature, so that faster load cycling operation is achieved without causing excessive thermal stresses in heat-exchanger tubes. In order to account for unstable and non-minimum phase boiler-turbine dynamics, the MPC technique applied is an infinite horizon non-linear physical model-based state-space MPC strategy, which guarantees asymptotic stability and feasibility in the presence of output and state constraints.
机译:在负载循环操作期间最佳地控制火力发电厂是一个非常具有挑战性的控制问题。同时发生传感器故障和过多系统干扰的可能性进一步提高了控制的复杂性。本文提出并评估了使用主成分分析(PCA)结合物理工厂模型的传感器验证和重建方法的有效性。为了在可能的传感器故障的情况下在严酷的工作条件下实现最佳控制,通过将基于PCA的传感器验证和重构方法与受约束的模型预测控制(MPC)技术进行适当的融合,设计出一种预测控制策略。作为案例研究,在单个传感器出现故障的情况下,将控制策略应用于火力发电厂的控制。特别是,它用于研究对主蒸汽温度和热交换器管壁温度施加速率限制的有效性和相对优势,从而实现更快的负载循环操作,而不会在热交换器管中引起过多的热应力。为了解决不稳定的和非最小相位的汽轮机动力学问题,所应用的MPC技术是一种基于无限地平线非线性物理模型的状态空间MPC策略,它保证了输出和状态存在时的渐近稳定性和可行性。约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号