...
首页> 外文期刊>Oikos: A Journal of Ecology >Dynamics of predator and modular prey: effects of module consumption on stability of prey-predator system.
【24h】

Dynamics of predator and modular prey: effects of module consumption on stability of prey-predator system.

机译:捕食者和模块化被捕食者的动力学:模块消耗对猎物-被捕食者系统稳定性的影响。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In traditional models of predator-prey population dynamics, it is usually assumed that consumed prey are immediately removed from the population. However, in plant-herbivore interactions, damaged plants are generally alive after attacks by herbivores. This can result in successive or simultaneous attacks by multiple predators on a single prey item (here, the term prey is expanded to include plants). We constructed a mathematical model with two time scales, taking into account predation processes within a generation, considering post-predation survival and the modularity of prey. We assumed that a prey item can be divided into modules and that it can be fed on by multiple predators or parasitized by multiple parasites at the same time. The model includes two essential factors: the modularity of prey for predators (n) and the detaching/attaching ratio of predators to prey ( epsilon ). Based on the formulae, we revealed a general property of realistic dynamics in plant-herbivore and host-parasite interactions. The analysis showed that the model could be approximated by models with the type I, type II or Beddington-DeAngelis functional responses by taking appropriate limits to the situations. When modularity is low or the detaching/attaching ratio is high, population dynamics tend to be stabilized. These stabilizing effects may be related to interference competition among predator individuals or increases in free prey modules and free predator individuals. In the limit of high modularity, the ratio of the attached prey modules to the total prey modules becomes negligible and the dynamics tend to be destabilized. However, if quantity and quality of prey modules are negatively correlated, the equilibrium is likely to be stabilized at high modularity as long as it remains feasible. These results suggest that considering post-predation survival and modularity of prey is crucial to understand predator-prey interactions.
机译:在传统的捕食者-猎物种群动态模型中,通常假设消耗的猎物会立即从种群中移除。但是,在植物与草食动物的相互作用中,受损的植物通常在食草动物攻击后仍然存活。这可能导致多个捕食者对单个猎物进行连续或同时的攻击(此处,术语“猎物”扩展为包括植物)。我们构建了一个具有两个时间尺度的数学模型,考虑了一代内的捕食过程,同时考虑了捕食后的生存时间和猎物的模块性。我们假设一个猎物可以分为多个模块,并且可以被多个捕食者捕食,或者可以同时被多个寄生虫寄生。该模型包括两个基本因素:捕食者的被捕食者的模块性(n)和捕食者与被捕食者的分离/附着比(epsilon)。基于公式,我们揭示了植物-草食动物和宿主-寄生虫相互作用中逼真的动态特性。分析表明,通过对情况进行适当的限制,可以用具有I型,II型或Beddington-DeAngelis功能性反应的模型来近似该模型。当模块性低或分离/附着率高时,种群动态趋于稳定。这些稳定作用可能与捕食者个体之间的干扰竞争有关,或者与自由猎物模块和自由捕食者个体的增加有关。在高模块性的限制下,附着的猎物模块与总猎物模块的比例可忽略不计,并且动力学趋于不稳定。但是,如果猎物模块的数量和质量呈负相关,则只要保持可行,平衡就可能以高模块化稳定。这些结果表明,考虑捕食后生存和猎物模块性对于理解捕食者与猎物之间的相互作用至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号