...
首页> 外文期刊>Ocean modelling >Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets
【24h】

Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

机译:由基于重新分析的大气数据集强迫建立的海洋模型模拟了20世纪的大西洋子午线俯仰环流

获取原文
获取原文并翻译 | 示例
           

摘要

Global ocean hindcast simulations for the period 1871-2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1943-2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948-1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations. (C) 2016 Elsevier Ltd. All rights reserved.
机译:挪威地球系统模型(NorESM-O)的海洋-海冰分量已进行了1871-2009年期间的全球海洋后预报模拟,这是由20世纪再分析版本2数据集(20CRv2数据集)的调整版本产生的),以及常用的第二版大气强迫数据集(用于1943-2007年的协调海冰参考实验第二阶段(CORE-II))(以下称为CORE.v2数据集)。在20CR中进行的模拟大西洋子午向翻转环流(AMOC)和CORE模拟在积分的最后三十年中具有相当的可变性以及平均强度。但是,模拟的AMOC在1948年至1970年期间经历了截然不同的演变,其CORE强度急剧下降,但20CR逐渐上升。敏感性实验表明,在此期间,CORE和20CR之间的风强迫差异对模拟AMOC具有重大影响。此外还发现,两个数据集之间的空气温度差异确实造成了AMOC的差异,但程度要比风小得多。 1948年后的二十年中,AMOC出现差异的另一个因素是,由于海洋模型的循环旋转过程,在1948年基于CORE.v2的运行中不可避免地切换了大气强迫场。后者是任何海洋后兆模拟的基本问题。海洋初始状态主要影响实际值,但在较小程度上还影响AMOC的时间演变(变异性)。尽管动态平衡的海洋初始状态往往会减少调整时间和偏差幅度,但AMOC在旋转加速期间可能需要大约二十年的时间才能适应新的大气状态,这意味着海洋模型在大气条件下运行像20CRv2这样的强制时间倒退的字段可以用来延长CORE型仿真的可靠持续时间。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号