首页> 外文期刊>Russian Geology and Geophysics >Method of radial sounding and elemental analysis of formations during well logging using neutron inelastic scattering gamma time-of-flight spectrometry
【24h】

Method of radial sounding and elemental analysis of formations during well logging using neutron inelastic scattering gamma time-of-flight spectrometry

机译:使用中子非弹性散射伽马飞行时间谱仪进行测井时径向测深和地层元素分析的方法

获取原文
获取原文并翻译 | 示例
       

摘要

This paper describes a well logging method and device designed to determine radial inhomogeneities in the elemental content of the borehole environment with high spatial resolution. The sounding factor that determines the spatial resolution is the time elapsed from the moment of neutron emission from the device to the moment the device records the gamma rays from neutron inelastic scattering (inelastic gamma rays, IGRs) in the formation. The time interval characterizes the distance to the point of origin of a gamma ray, and the energy of a gamma ray passing through the formation without interaction determines the chemical element involved in inelastic scattering. Simulations have shown that at each time, the density of inelastic scattering is very well localized in space owing to the small number of fast-neutron scatterings: on average, one to two events. It is the compact localization of inelastic scattering events that provides high radial resolution (and, if necessary, high azimuth resolution) during fast-neutron sounding of formations and measurement of unsteady IGR fluxes. Recording of IGR distributions over time also provides increasing sounding depth because powerful IGR fluxes from nearby regions reach the detector at short times and do not overlap the weaker IGR fluxes from distant regions because the latter reach the detector later. To evaluate the radial resolution of the method, we calculated the response of the sonde for typical models of a borehole environment which include a borehole, an iron casing, cement, an invaded zone, and an uninvaded rock. The boundaries of spatial inhomogeneities and the elemental content in the regions between these boundaries were determined from time dependences of unscattered spectral lines in IGR spectra for the elements Ca, Si, C, O, and Fe. The results of the numerical simulation indicate a high sensitivity of the measurements to the radial boundaries and an adequate spatial resolution: about 1 cm at a 0.1 ns time sampling of logs. The interfaces between the radial zones are clearly marked in the time distributions by steep fronts with a length of 0.1 ns (at a collimation angle of the source of about 30°) to 0.15-0.4 ns (at an angle of 90°). A method of solution was formulated for the inverse problem consisting of determining the boundaries of the radial zones and the elemental content in these zones. The problem is solved using a qualitative model of the borehole environment, for example, a "borehole-casing-cement-invaded zone-uninvaded rock" model. The method is based on searching for approximating model curves to measured time distributions of unscattered IGR fluxes jointly for all components of the model. The search is conducted by spatial optimization of the sought parameters-the distances {. rS} from the neutron source to the boundaries of the zones and the concentrations {. C} of specified chemical compounds in these zones. The initial approximations for the sought parameters {. rS} and {. C} are calculated by linear inversion of logs, which proves to be very accurate because the contribution of singly scattered neutrons to the inelastic scattering density at small times (10 ns) is, on average, 50-90%. Model curves are calculated by numerical simulation of the transport of neutrons and gamma rays. An appropriate calculation method is the Monte Carlo technique. Since the multiplicity of neutron scattering is low and, for gamma rays, only the unscattered component is of interest, the numerical simulation is a fast process. The practical implementation of the method requires the use of advanced developments in the design of neutron generators, spectral gamma-ray detectors, and fast analyzers for recording subnanosecond processes. Use of associated-particle neutron generators, Ge semiconductor detectors with electron cooling or LaBr3 (Ce) and BaF2 based fast scintillator blocks of high energy resolution will allow the application of the proposed method to logging measurements.
机译:本文介绍了一种测井方法和装置,旨在确定具有高空间分辨率的井眼环境元素含量中的径向不均匀性。确定空间分辨率的探测因素是从设备中子发射时刻到设备记录地层中子非弹性散射产生的伽马射线(非弹性伽马射线,IGR)所经过的时间。时间间隔表征了到伽马射线起源点的距离,并且伽马射线穿过地层而没有相互作用的能量决定了非弹性散射中涉及的化学元素。模拟表明,由于快速中子散射的数量很少,因此每次非弹性散射的密度都很好地定位在空间中:平均而言,发生一到两个事件。正是非弹性散射事件的紧凑定位在地层快速中子探测和测量不稳定IGR通量的过程中提供了高径向分辨率(必要时还提供了高方位角分辨率)。记录随着时间​​的IGR分布还提供了增加的探测深度,因为来自附近区域的强大IGR通量在短时间内到达检测器,并且与来自较远区域的较弱IGR通量不重叠,因为后者较晚到达检测器。为了评估该方法的径向分辨率,我们针对井眼环境的典型模型(包括井眼,铁套管,水泥,侵入区和未侵入岩石)计算了探空仪的响应。从元素Ca,Si,C,O和Fe的IGR光谱中未散射光谱线的时间依赖性确定空间不均匀性的边界和这些边界之间区域中的元素含量。数值模拟的结果表明,测量对径向边界具有很高的敏感性,并且具有足够的空间分辨率:以0.1 ns的时间对原木进行采样时约为1 cm。径向区域之间的界面在时间分布中由长度为0.1 ns(在光源的准直角为约30°时)到0.15-0.4 ns(以90°角)时的陡峭锋线清晰地标记。针对反问题制定了一种求解方法,该方法包括确定径向区域的边界和这些区域中的元素含量。使用井眼环境的定性模型(例如,“井筒-套管-水泥侵入带-未侵入岩”)模型可以解决该问题。该方法基于为模型的所有组成部分共同搜索近似曲线以测量未散射IGR通量的时间分布。该搜索是通过对搜索参数-距离{进行空间优化来进行的。 rS}从中子源到区域边界和浓度{。 C}在这些区域中的特定化合物。所需参数{的初始近似值。 rS}和{。 C}是通过对数的线性反演来计算的,这被证明是非常准确的,因为单个散射的中子在很小的时间(10 ns)内对非弹性散射密度的贡献平均为50-90%。通过对中子和伽马射线传输的数值模拟来计算模型曲线。合适的计算方法是蒙特卡洛技术。由于中子散射的多重性很低,并且对于伽马射线,只有未散射的成分才有意义,因此数值模拟是一个快速的过程。该方法的实际实现需要在中子发生器,光谱伽马射线探测器和用于记录亚纳秒过程的快速分析仪的设计中使用先进的技术。使用关联粒子中子发生器,具有电子冷却功能的Ge半导体探测器或具有高能量分辨率的基于LaBr3(Ce)和BaF2的快速闪烁体模块将使所提出的方法能够应用于测井测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号