首页> 外文期刊>Russian Geology and Geophysics >Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism
【24h】

Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism

机译:橄榄岩岩石圈地幔的碳酸盐交代作用:对金刚石形成和碳酸盐岩-金伯利岩岩浆作用的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Mineral inclusions in diamond record its origin at different depths, down to the lower mantle. However, most diamonds entrained with erupting kimberlite magma originate in lithospheric mantle. Lithospheric U-type diamonds crystallize during early metasomatism of reduced (fO(2) at the IW oxygen buffer) depleted peridotite in the roots of Precambrian cratons. Evidence of the metasomatic events comes from compositions of garnets in peridotitic xenoliths and inclusions in diamonds. On further interaction with carbonatitic melt, peridotite changes its composition, while diamond no longer forms in a more oxidized environment (fO(2) near the CCO buffer). Silicate metasomatism of depleted peridotite (by basanite-like melts) does not induce diamond formation but may participate in generation of group I kimberlite. Low-degree (below 1%) partial melting of metasomatized peridotite produces a kimberlite-carbonatite magmatic assemblage, as in the case of the Snap Lake kimberlite dike. Occasionally, mantle metasomatism may occur as reduction reactions with carbonates and H2O giving rise to hydrocarbon compounds, though the origin of hydrocarbons in the deep mantle remains open to discussion. Melting experiments in carbonate systems show hydrous carbonated melts with low H2O to be the most plausible agents of mantle material transport. An experiment-based model implies melting of carbonates in subducting slabs within the mantle transition zone, leading to formation of carbonatitic diapirs, which can rise through the mantle by buoyancy according to the dissolution-precipitation mechanism. These processes, in turn, can form oxidized channels in the mantle and maintain diamond growth at the back of diapirs by reducing carbon from carbonated melts. When reaching the lithospheric base, such diapirs form a source of kimberlite and related magmas. The primary composition of kimberlite often approaches carbonatite with no more than 10-15% SiO2. (C) 2015, V. S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
机译:钻石中的矿物包裹体记录了其起源于不同深度,直至下地幔。但是,大多数伴有金伯利岩喷发岩浆夹带的钻石起源于岩石圈地幔。岩石圈U型钻石在前交代克拉通的根中减少的橄榄岩减少(在IW氧气缓冲液中为fO(2))的早期交代作用中结晶。变元事件的证据来自于橄榄石异岩中的石榴石成分和钻石中的夹杂物。在与碳酸盐熔体进一步相互作用时,橄榄岩改变其组成,而钻石不再在更氧化的环境中形成(CCO缓冲液附近的fO(2))。贫化橄榄岩的硅酸盐交代作用(通过类似Basanite的熔体)不会诱导钻石形成,但可能参与了I类金伯利岩的生成。与Snap Lake金伯利岩堤一样,交化的橄榄岩的低度(低于1%)部分熔融会产生金伯利岩-碳酸盐岩岩浆组合。尽管深部地幔中碳氢化合物的起源仍有待讨论,但有时碳酸盐和H2O的还原反应会引起地幔交代作用,从而形成烃类化合物。碳酸盐体系中的熔融实验表明,含水量低的含水碳酸化熔融物是最有效的地幔物质输送剂。基于实验的模型暗示着碳酸盐在地幔过渡带内俯冲板块中的熔融,从而导致碳酸盐岩的形成,根据溶解-沉淀机制,碳酸盐岩可以通过浮力通过地幔上升。反过来,这些过程可以通过减少碳酸盐熔体中的碳,在地幔中形成氧化通道,并在钻石的背面保持钻石的生长。当到达岩石圈底部时,这些辉石形成了金伯利岩和相关岩浆的来源。金伯利岩的主要成分通常接近不超过10-15%SiO2的碳酸盐。 (C)2015,V。S. Sobolev IGM,RAS的西伯利亚分公司。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号