首页> 外文期刊>Rubber Chemistry and Technology >RELATIONSHIP BETWEEN THE COHESIVE STRENGTH AND TACK OF ELASTOMERS .4. CARBON BLACK FILLED STYRENE-BUTADIENE RUBBER
【24h】

RELATIONSHIP BETWEEN THE COHESIVE STRENGTH AND TACK OF ELASTOMERS .4. CARBON BLACK FILLED STYRENE-BUTADIENE RUBBER

机译:弹性体的粘结强度与粘性之间的关系.4。碳黑填充苯乙烯丁二烯橡胶

获取原文
获取原文并翻译 | 示例
           

摘要

The autohesion and cohesion of uncrosslinked SBR (gum and black-filled) have been determined over a broad range of test temperatures and rates using a T-peel geometry. Peeling energies can be time-temperature superposed to form mastercurves using shift factors in accord with the WLF form. Universal constants are appropriate for the gum. While experimental constants were obtained for the black composition. Cohesion for the gum and filled SDR increase continuously with increasing test speed or reduced temperature. On the other hand, autohesion for the gum shows an abrupt transition by decreasing at a critical reduced rate, while autohesion of the filled SBR does nut exhibit the transition. The transition is associated with a viscous-to-elastic response change with Increasing Ra-T; filled SDR has reduced elasticity relative to the gum and hence the transition is not present. By examining relative autohesion, it is seen that the gum undergoes an interfacial-cohesive-interfacial transition response with increasing Ra-T. This is quite different than the behavior found when peeling apart elastomer/hard substrate bonds, such as the SBR/polyester bonds of Gent and Petrich; here, there is sim ply a cohesive-interfacial transition with increasing Ra-T. For elastomer-elastomer junctions there is interpenetration and chain mobility in the interphase formed. At sufficiently low Ra-T, interdiffused chains simply slide by one another giving interfacial failure. With increasing Ra-T entanglement couplings in the interphase become effective in preventing facile flow, and, at this point, failure becomes cohesive; finally, at even higher Ra-T, with a sufficiently elastic response, stresses apparently become concentrated at the interface and failure proceeds there. When an elastomer is bonded to a hard, immobile material, the mechanism of bonding is restricted to surface site adsorption, This reduces elastomeric chain mobility and produces more ''glassy'' dispersive interactions which resist separation relative to tile chains which are held together by ''rubbery'' dispersive forces. Again at sufficiently high Ra-T, with increased elasticity, failure becomes interfacial. [References: 9]
机译:已使用T型剥离几何结构在较宽的测试温度和速率范围内确定了未交联SBR(胶和黑色填充胶)的自粘性和内聚性。剥离能量可以在时间-温度上叠加,以使用符合WLF形式的位移因子形成主曲线。通用常数适用于口香糖。同时获得黑色组合物的实验常数。随着测试速度的提高或温度的降低,口香糖和填充SDR的内聚力不断提高。另一方面,口香糖的自粘性通过以临界降低的速率降低而显示出突然的转变,而填充的SBR的自粘性确实表现出了转变。转变与随着Ra-T的增加从粘弹性响应变化有关。填充的SDR相对于口香糖的弹性降低,因此不存在过渡。通过检查相对自粘力,可以看到口香糖随着Ra-T的增加而经历界面-内聚-界面转变反应。这与剥离弹性体/硬质基材键(例如Gent和Petrich的SBR /聚酯键)时发现的行为完全不同。这里,随着Ra-T的增加,有一个内聚到界面的过渡。对于弹性体-弹性体连接,在形成的相间存在互穿和链迁移。在Ra-T足够低的情况下,相互扩散的链会相互滑动,从而产生界面破坏。随着Ra-T缠结的增加,相间的耦合有效地防止了流动的发生,这时,失效变得凝聚了。最后,在甚至更高的Ra-T下,具有足够的弹性响应,应力显然会集中在界面处,并在那里发生破坏。当弹性体粘结到坚硬的固定材料上时,粘结机理仅限于表面部位吸附,这会降低弹性体链的流动性,并产生更多的“玻璃状”分散相互作用,从而相对于由“橡胶”分散力。再次,在足够高的Ra-T下,随着弹性增加,失效变成界面。 [参考:9]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号