...
首页> 外文期刊>RSC Advances >Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid
【24h】

Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid

机译:复杂的酰胺交联二足烷基/硅氧烷杂物的分形性和亚稳定性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A novel room-temperature white light emitter amide-cross linked alkyl/siloxane hybrid material (amidosil A) was produced by self-organization through the rational design of the precursor. This hybrid displays a highly complex hierarchical architecture composed of two lamellar bilayer structures, the relative spatial arrangement of which yields a multiplicity of ordered nanodomains with variable shapes and sizes, some of them persisting at the microscale. Macroscopically A was obtained as clusters of hydrophobic hemispherical and spherical micro-objects exhibiting a lettuce coral-like pattern, which represent unprecedented pieces of evidence illustrating the principles of self-similarity and demonstrating that the time scale of biomimetic morphogenesis in this non-bridged silsesquioxane is similar to that in biological systems. Heating metastable A above the order/disorder phase transition acted as an external quake driving the material to another metastable state, which has persisted for more than 12 months, and was manifested as a marked change of all the macroscopic properties. The occurrence of the self-organization process operating on A, instead of a self-directed assembly, is primarily associated with the formation/rupture of hydrogen bonds, therefore supporting that these interactions are critical factors dictating on what side of the self-assembly/self-organization boundary a non-bridged silsesquioxane system will evolve.
机译:通过前体的合理设计,通过自组织产生了一种新型的室温白光发射体酰胺交联的烷基/硅氧烷杂化材料(酰胺基A)。该杂种展示了由两个层状双层结构组成的高度复杂的层次结构,其相对空间排列产生了形状和大小可变的多个有序纳米域,其中一些在微尺度上持续存在。宏观上,A是疏水半球和球形微对象簇,表现出生菜珊瑚状图案,代表了史无前例的证据,说明了自相似性原理,并证明了这种非桥接倍半硅氧烷中仿生形态发生的时间尺度与生物系统中的相似。在有序/无序相变之上的加热亚稳态A起到了外部地震的作用,将材料驱动到另一种亚稳态,该状态持续了12个月以上,并表现为所有宏观性质的显着变化。在A上进行的自组织过程而不是自指导的组装过程的发生,主要与氢键的形成/断裂有关,因此支持这些相互作用是决定自组装/过程的哪一侧的关键因素。自组织边界的非桥倍半硅氧烷系统将发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号