...
首页> 外文期刊>Reviews in nanoscience and nanotechnology >Bioconjugates Based on Semiconductor Quantum Dots and Porphyrin Ligands: Properties, Exciton Relaxation Pathways and Singlet Oxygen Generation Efficiency for Photodynamic Therapy Applications
【24h】

Bioconjugates Based on Semiconductor Quantum Dots and Porphyrin Ligands: Properties, Exciton Relaxation Pathways and Singlet Oxygen Generation Efficiency for Photodynamic Therapy Applications

机译:基于半导体量子点和卟啉配体的生物共轭物:性质,激子弛豫途径和单线态氧产生效率在光动力疗法中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

At the moment, though several examples of employing QDs for the photodynamic therapy (PDT) have been described, their full capabilities have yet to be harnessed, and QD-photosensitizer conjugates are still an intriguing option for PDT applications. In this review, the basic photophysical properties of semiconductor nanocrystals are discussed and their potential conformances with the above criteria are highlighted. Special interest is devoted to the analysis of exciton relaxation pathways in self-assembled bioconjugates comprising a semiconductor CdSe/ZnS QDs coupled with porphyrin molecule (FRET and electron tunneling in the conditions of quantum confinement). Based on these results, available data are presented for intrinsic singlet oxygen generation by alone semiconductor QDs as well as for QD-porphyrin bioconjugates in solutions at ambient temperature. Within the accuracy of the independent experiments, FRET efficiencies found from the direct sensitization of porphyrin fluorescence in bioconjugates are in a good agreement with the corresponding values obtained via the direct ~1O2 generation measurements at low laser excitation, thus providing for the first time strong evidence that namely FRET process QD→porphyrin is a reason of singlet oxygen generation by bioconjugates. Finally, structural and photophysical properties of the above bioconjugates are discussed in the context of possible application in PDT by means of direct optical excitation by a core nanocrystal with subsequent excitation transfer to the molecule which in turn performs singlet oxygen generation in a traditional way as current PDT photosensitizers do, i.e., via the diffusionally controlled energy transfer from the triplet excited photosensitizer to molecular oxygen.
机译:目前,尽管已经描述了将QD用于光动力疗法(PDT)的几个示例,但尚未充分利用它们的全部功能,而QD-光敏剂共轭物仍然是PDT应用中一个引人入胜的选择。在这篇综述中,讨论了半导体纳米晶体的基本光物理性质,并突出了它们与上述标准的潜在一致性。特别感兴趣的是对自组装生物共轭物中激子弛豫途径的分析,该共轭物包含半导体CdSe / ZnS QD与卟啉分子偶联(在量子约束条件下,FRET和电子隧穿)。基于这些结果,可提供有关单独的半导体QD以及在室温下溶液中QD-卟啉生物共轭物产生固有单线态氧的可用数据。在独立实验的精度范围内,通过生物缀合物中卟啉荧光的直接敏化发现的FRET效率与通过在低激光激发下直接〜1O2生成测量获得的相应值高度吻合,从而首次提供了有力的证据即FRET法QD→卟啉是生物结合物产生单线态氧的原因。最后,在可能的PDT应用中,通过核心纳米晶体直接光学激发并随后将激发转移至分子,再以传统方式作为电流进行单线态氧的产生,讨论了上述生物共轭物的结构和光物理性质。 PDT光敏剂确实可以做到这一点,即通过从三重激发态光敏剂到分子氧的扩散控制能量转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号