首页> 外文期刊>Cell death and differentiation >Origin and evolution of eukaryotic apoptosis: the bacterial connection.
【24h】

Origin and evolution of eukaryotic apoptosis: the bacterial connection.

机译:真核细胞凋亡的起源和进化:细菌的联系。

获取原文
获取原文并翻译 | 示例
       

摘要

The availability of numerous complete genome sequences of prokaryotes and several eukaryotic genome sequences provides for new insights into the origin of unique functional systems of the eukaryotes. Several key enzymes of the apoptotic machinery, including the paracaspase and metacaspase families of the caspase-like protease superfamily, apoptotic ATPases and NACHT family NTPases, and mitochondrial HtrA-like proteases, have diverse homologs in bacteria, but not in archaea. Phylogenetic analysis strongly suggests a mitochondrial origin for metacaspases and the HtrA-like proteases, whereas acquisition from Actinomycetes appears to be the most likely scenario for AP-ATPases. The homologs of apoptotic proteins are particularly abundant and diverse in bacteria that undergo complex development, such as Actinomycetes, Cyanobacteria and alpha-proteobacteria, the latter being progenitors of the mitochondria. In these bacteria, the apoptosis-related domains typically form multidomain proteins, which are known or inferred to participate in signal transduction and regulation of gene expression. Some of these bacterial multidomain proteins contain fusions between apoptosis-related domains, such as AP-ATPase fused with a metacaspase or a TIR domain. Thus, bacterial homologs of eukaryotic apoptotic machinery components might functionally and physically interact with each other as parts of signaling pathways that remain to be investigated. An emerging scenario of the origin of the eukaryotic apoptotic system involves acquisition of several central apoptotic effectors as a consequence of mitochondrial endosymbiosis and probably also as a result of subsequent, additional horizontal gene transfer events, which was followed by recruitment of newly emerging eukaryotic domains as adaptors. DOI: 10.1038/sj/cdd/4400991
机译:大量的原核生物完整基因组序列和几种真核生物基因组序列的可用性为真核生物独特功能系统的起源提供了新的见解。凋亡机制的几种关键酶包括半胱天冬酶样蛋白酶超家族的半胱天冬酶和半胱天冬酶家族,细胞凋亡ATP酶和NACHT家族NTPases和线粒体HtrA样蛋白酶在细菌中具有不同的同源物,但在古细菌中却没有。系统发生学分析强烈表明,半胱天冬酶和HtrA样蛋白酶的线粒体起源,而从放线菌的收购似乎是最有可能的AP-ATPase。凋亡蛋白的同系物在经历复杂发育的细菌中特别丰富且多样,例如放线菌,蓝细菌和α-蛋白细菌,后者是线粒体的祖细胞。在这些细菌中,凋亡相关结构域通常形成多结构域蛋白,已知或推断其参与信号转导和基因表达调控。这些细菌多结构域蛋白中的某些包含凋亡相关结构域之间的融合体,例如与metacaspase或TIR结构域融合的AP-ATPase。因此,真核细胞凋亡机制组件的细菌同源物可能在功能上和物理上相互作用,作为信号通路的一部分,有待研究。真核细胞凋亡系统起源的一种新兴情况涉及线粒体内共生的结果,以及可能是随后的其他水平基因转移事件的结果,因此获得了几个中央凋亡效应子,随后募集了新出现的真核细胞结构域适配器。 DOI:10.1038 / sj / cdd / 4400991

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号