...
首页> 外文期刊>Reviews of Geophysics >Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain
【24h】

Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain

机译:部分饱和裂隙岩中的多物理场过程:丝兰山的实验和模型

获取原文
获取原文并翻译 | 示例
           

摘要

[1] The site investigations at Yucca Mountain, Nevada, have provided us with an outstanding data set, one that has significantly advanced our knowledge of multiphysics processes in partially saturated fractured geological media. Such advancement was made possible, foremost, by substantial investments in multiyear field experiments that enabled the study of thermally driven multiphysics and testing of numerical models at a large spatial scale. The development of coupled-process models within the project have resulted in a number of new, advanced multiphysics numerical models that are today applied over a wide range of geoscientific research and geoengineering applications. Using such models, the potential impact of thermal-hydrological-mechanical (THM) multiphysics processes over the long-term (e.g., 10,000 years) could be predicted and bounded with some degree of confidence. The fact that the rock mass at Yucca Mountain is intensively fractured enabled continuum models to be used, although discontinuum models were also applied and are better suited for analyzing some issues, especially those related to predictions of rockfall within open excavations. The work showed that in situ tests (rather than small-scale laboratory experiments alone) are essential for determining appropriate input parameters for multiphysics models of fractured rocks, especially related to parameters defining how permeability might evolve under changing stress and temperature. A significant laboratory test program at Yucca Mountain also made important contributions to the field of rock mechanics, showing a unique relation between porosity and mechanical properties, a time dependency of strength that is significant for long-term excavation stability, a decreasing rock strength with sample size using very large core experiments, and a strong temperature dependency of the thermal expansion coefficient for temperatures up to 200°C. The analysis of in situ heater experiments showed that fracture closure/opening caused by changes in normal stress across fractures was the dominant mechanism for thermally induced changes in intrinsic fracture permeability during rock mass heating/cooling and that fracture shear dilation appears to be less significant. Significant effort was devoted to predicting the long-term stability of underground excavations under (mechanical) strength degradation and seismic loading, perhaps one of the most challenging tasks within the project. We note that such long-term strength degradation is actually an example of a chemically mediated process governed by underlying (microscopic) stress corrosion and chemical diffusion processes. In the Yucca Mountain Project, such chemically mediated mechanical changes were considered implicitly through model calibrations against laboratory and in situ heater experiments at temperatures anticipated to be experienced by the rock. A possible future research direction would be to simulate such processes mechanistically in a complete coupled THMC framework where C denotes chemical processes.
机译:[1]在内华达州尤卡山的现场调查为我们提供了一套出色的数据集,该数据集大大提高了我们对部分饱和裂缝性地质介质中多物理场过程的认识。最重要的是,通过对多年现场试验的大量投资,使热驱动多物理场的研究和大规模空间数值模型的测试成为可能,从而使这种进步成为可能。该项目中耦合过程模型的开发产生了许多新的先进的多物理场数值模型,这些模型如今已广泛应用于地球科学研究和地球工程应用中。使用这样的模型,可以预测长期(例如10,000年)内热-水文-机械(THM)多物理场过程的潜在影响,并可以有一定的信心。尽管尤卡山的岩体发生了强烈的破裂,但仍可以使用连续体模型,尽管也使用了不连续体模型,并且该模型更适合分析某些问题,尤其是那些与露天开挖中的岩崩预测有关的问题。这项工作表明,原位测试(而不是仅进行小型实验室实验)对于确定裂隙岩石的多物理场模型的适当输入参数至关重要,尤其是与定义渗透率在应力和温度变化时如何演化的参数有关。尤卡山(Yucca Mountain)一项重要的实验室测试计划也对岩石力学领域做出了重要贡献,显示出孔隙率和力学性能之间的独特关系,强度的时间依赖性对于长期的开挖稳定性具有重要意义,岩石强度随样品的降低而降低使用非常大的核心实验得出的尺寸,以及温度高达200°C时热膨胀系数与温度的强烈相关性。原位加热器实验的分析表明,由裂缝间法向应力变化引起的裂缝闭合/张开是岩体加热/冷却过程中热引起固有裂缝渗透率变化的主要机制,并且裂缝剪切扩张似乎不那么重要。为了预测地下开挖在(机械)强度退化和地震荷载作用下的长期稳定性,人们付出了巨大的努力,这可能是项目中最具挑战性的任务之一。我们注意到,这种长期强度下降实际上是由基础(微观)应力腐蚀和化学扩散过程控制的化学介导过程的一个示例。在尤卡山项目中,通过针对实验室和原位加热器实验在岩石预计会经历的温度下进行模型校准,隐式考虑了这种化学介导的机械变化。未来可能的研究方向是在完全耦合的THMC框架中机械地模拟此类过程,其中C表示化学过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号