...
首页> 外文期刊>Radiation Physics and Chemistry >Effects of physics change in Monte Carlo code on electron pencil beam dose distributions
【24h】

Effects of physics change in Monte Carlo code on electron pencil beam dose distributions

机译:蒙特卡罗代码中物理变化对电子铅笔束剂量分布的影响

获取原文
获取原文并翻译 | 示例

摘要

Pencil beam algorithms used in computerized electron beam dose planning are usually described using the small angle multiple scattering theory. Alternatively, the pencil beams can be generated by Monte Carlo simulation of electron transport. In a previous work, the 4th version of the Electron Gamma Shower (EGS) Monte Carlo code was used to obtain dose distributions from monoenergetic electron pencil beam, with incident energy between 1 MeV and 50 MeV, interacting at the surface of a large cylindrical homogeneous water phantom. In 2000, a new version of this Monte Carlo code has been made available by the National Research Council of Canada (NRC), which includes various improvements in its electron-transport algorithms. In the present work, we were interested to see if the new physics in this version produces pencil beam dose distributions very different from those calculated with oldest one. The purpose of this study is to quantify as well as to understand these differences. We have compared a series of pencil beam dose distributions scored in cylindrical geometry, for electron energies between 1 MeV and 50 MeV calculated with two versions of the Electron Gamma Shower Monte Carlo Code. Data calculated and compared include isodose distributions, radial dose distributions and fractions of energy deposition. Our results for radial dose distributions show agreement within 10% between doses calculated by the two codes for voxels closer to the pencil beam central axis, while the differences are up to 30% for longer distances. For fractions of energy deposition, the results of the EGS4 are in good agreement (within 2%) with those calculated by EGSnrc at shallow depths for all energies, whereas a slightly worse agreement (15%) is observed at deeper distances. These differences may be mainly attributed to the different multiple scattering for electron transport adopted in these two codes and the inclusion of spin effect, which produces an increase of the effective range of electrons.
机译:通常使用小角度多重散射理论描述用于计算机电子束剂量计划的笔形束算法。可替代地,可以通过电子传输的蒙特卡洛模拟来产生笔形束。在先前的工作中,电子伽玛阵雨(EGS)的第四版蒙特卡罗代码用于从单能电子笔束中获得剂量分布,入射能量在1 MeV和50 MeV之间,在大圆柱均质表面上相互作用水幻影。 2000年,加拿大国家研究委员会(NRC)提供了此蒙特卡洛代码的新版本,其中包括其电子传输算法的各种改进。在当前的工作中,我们很想知道此版本中的新物理学是否会产生与最旧的铅笔束剂量分布非常不同的铅笔束剂量分布。这项研究的目的是量化并了解这些差异。我们比较了用两种形式的电子伽玛阵雨蒙特卡洛法计算出的在1 MeV和50 MeV之间的电子能量,在圆柱几何形状中得到的一系列铅笔束剂量分布。计算和比较的数据包括等剂量分布,径向剂量分布和能量沉积分数。我们的径向剂量分布结果表明,两个代码为更靠近笔形光束中心轴的体素计算的剂量之间的一致性在10%以内,而对于更长的距离,差异高达30%。对于部分能量沉积,EGS4的结果与所有能量在浅深度处的EGSnrc计算得出的结果吻合良好(在2%以内),而在更深的距离处观察到的结果稍差(15%)。这些差异可能主要归因于这两个编码中采用的电子传输的多重散射不同,并且包含了自旋效应,从而增加了电子的有效范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号