...
首页> 外文期刊>Radiation measurements >Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence
【24h】

Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence

机译:走向长石中的不褪色信号:时间分辨的光激发发光对电荷传输和隧穿的洞察力

获取原文
获取原文并翻译 | 示例

摘要

Feldspars are an attractive alternative to quartz for extending the dose range, and for dating volcanic terrains such as on Mars and Iceland. Unfortunately, charge stored in the feldspar lattice undergoes anomalous fading leading to an underestimation in the dose estimates. In this paper we use the time-resolved optically stimulated luminescence (TR-OSL) technique to investigate the processes that give rise to the signal following infrared (IR), green and blue stimulation, with an objective to understand tunnelling and charge transport during thermo-optical excitations. We show that the TR-OSL shape is governed by the energy of excitation and the subsequent charge recombination route through the excited state of the trap, the band tail states or the conduction band. The role of band tail states in charge recombination is specifically examined using the signal shown to decay over several ms; we identify two dominant recombination routes, viz., phonon (0.05-0.06 eV) assisted diffusion, and quantum mechanical tunnelling, depending on the energy state of the detrapped electron. As would be expected, diffusion in the band tails is identical for both resonant and non-resonant excitations, where in the latter case the band tail state occupancy likely arises from thermalisation of conduction band electrons. The important outcome of this study is a comprehensive physical model based on a single dosimetric trap that successfully explains wide-ranging luminescence phenomena in feldspars, in particular, the luminescence efficiency and thermal partitioning of charge in different energy states and the subsequent recombination routes. The model predicts three different systematic approaches to preferentially sampling the most stable signal. We finally present evidence for a non-fading signal using one of these methods based on pulsed IR stimulation.
机译:长石是石英的一种有吸引力的替代品,可以扩大剂量范围,并为火星和冰岛等火山地形定年。不幸的是,长石晶格中存储的电荷会发生异常褪色,从而导致剂量估算值被低估。在本文中,我们使用时间分辨的光激发发光(TR-OSL)技术来研究在红外(IR),绿色和蓝色刺激后产生信号的过程,目的是了解热期间的隧穿和电荷传输-光学激发。我们表明,TR-OSL的形状受激发能和随后通过陷阱的激发态,带尾态或导带的电荷复合途径的控制。带尾态在电荷重组中的作用通过使用在数毫秒内衰减的信号进行了专门检查。我们确定了两种主要的重组途径,即声子(0.05-0.06 eV)辅助扩散和量子力学隧穿,具体取决于被俘获电子的能量状态。可以预料,对于共振和非共振激发,带尾中的扩散是相同的,在后一种情况下,带尾态的占据很可能是由导带电子的热化引起的。这项研究的重要成果是基于单个剂量陷阱的综合物理模型,该模型成功地解释了长石中广泛的发光现象,特别是在不同能量状态下的发光效率和电荷的热分配以及随后的重组途径。该模型预测了三种不同的系统方法来优先采样最稳定的信号。我们最终提出了使用基于脉冲IR刺激的这些方法之一的非衰落信号的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号