首页> 外文期刊>Reviews in Environmntal Science and Biotechnology >Microbial transformation of chlorinated benzoates
【24h】

Microbial transformation of chlorinated benzoates

机译:氯化苯甲酸酯的微生物转化

获取原文
获取原文并翻译 | 示例
       

摘要

Chlorinated benzoates enter the environment through their use as herbicides or as metabolites of other halogenated compounds. Ample evidence is available indicating biodegradation of chlorinated benzoates to CO2 and chloride in the environment under aerobic as well as anaerobic conditions. Under aerobic conditions, lower chlorinated benzoates can serve as sole electron and carbon sources supporting growth of a large list of taxonomically diverse bacterial strains. These bacteria utilize a variety of pathways ranging from those involving an initial degradative attack by dioxygenases to those initiated by hydrolytic dehalogenases. In addition to mono-chlorinated benzoates, several bacterial strains have been isolated that can grow on dichloro-, and triehloro- isomers of chlorobenzoates. Some aerobic bacteria are capable of cometabolizing chlorinated benzoates with simple primary substrates such as benzoate. Under anaerobic conditions, chlorinated benzoates are subject to reductive dechlorination when suitable electron-donating substrates are available. Several halorespiring bacteria are known which can use chlorobenzoates as electron acceptors to support growth. For example, Desulfomonile tiedjei catalyzes the reductive dechlorination of 3-chloro-benzoate to benzoate. The benzoate skeleton is mineralized by other microorganisms in the anaerobic environment. Various dichloro- and trichloro-benzoates are also known to be dechlorinated in anaerobic sediments.
机译:氯化苯甲酸酯通过用作除草剂或其他卤代化合物的代谢物而进入环境。有足够的证据表明,在好氧和厌氧条件下,环境中氯化苯甲酸酯都会被生物降解为二氧化碳和氯化物。在有氧条件下,低级氯化苯甲酸酯可作为唯一的电子和碳源,支持大量分类学多样的细菌菌株的生长。这些细菌利用多种途径,从涉及由双加氧酶引起的初始降解攻击的途径到由水解脱卤素酶引发的途径。除了单氯化苯甲酸酯外,还分离了一些细菌菌株,它们可以在氯苯甲酸酯的二氯和三氯异构体上生长。一些有氧细菌能够与简单的主要底物(例如苯甲酸盐)发生代谢作用来分解氯化苯甲酸盐。在厌氧条件下,如果有合适的供电子底物,氯化苯甲酸酯会进行还原脱氯。已知有几种吸汗细菌可以使用氯苯甲酸酯作为电子受体来支持生长。例如,脱磺基苯并噻吩催化3-氯苯甲酸酯还原还原为氯代苯甲酸酯。苯甲酸骨架在厌氧环境中被其他微生物矿化。还已知各种二氯和三氯苯甲酸酯在厌氧沉积物中被脱氯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号