首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests
【24h】

Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests

机译:利用热惯性反演土壤水分,并通过可见和热星载数据确定,并已针对欧洲森林进行了验证

获取原文
获取原文并翻译 | 示例
           

摘要

Variations in soil moisture strongly affect surface energy balances, regional runoff, land erosion and vegetation productivity (potential crop yield). Hence, the detection of soil moisture content (SMC) is very valuable in the social, economic, humanitarian (food security) and environmental segments of society. A method to estimate SMC from optical and thermal spectral information of METEOSAT imagery based on thermal inertia (TI) is presented. Minimum and maximum TI values from time series are combined in the Soil Moisture Saturation Index (SMSI). To convert surface to soil profile values, a Markov type filter is used, based on a simple two layer water balance equation (the surface layer and the reservoir below) and an autocorrelation function. Ten-daily SMC values are compared with up-scaled (using AVHRR/NDVI) observations on 10 EUROFLUX sites in Europe for the 1997 growing season (March-October). Moreover, the thermal inertia approach is compared for 1997, with ERS Scatterometer data for eight EUROFLUX sites. METEOSAT pixels are up-scaled to accommodate the ERS Scatterometer spatial resolution. The regression coefficients (slope, intercept and R-2) of the thermal inertia approach versus the up-scaled soil moisture observations from EUROFLUX sites vary between 0.811-1.148, -0.0029-0.66 and 0.544-0.877, respectively, with a RRMSE range of 3.9% to 35.7%. The regression coefficients of the comparison of ERS Scatterometer derived Soil Water Index (SWI) versus the up-scaled Soil Moisture Saturation Index for the pooled case (binning the eight EUROFLUX sites) are 0.587, 0.105 and 0.441, respectively, with a RRMSE of 38%. A simple error propagation model applied for the thermal inertia approach reveals that the absolute and relative errors of the obtained soil moisture content is at least 0.010 m(3) m(-3) or 2.0% with a SMC of 0.203 m(3) m(-3). Recommendations are made to test and implement the TI methodology using NOAA/AVHRR imagery. (c) 2006 Elsevier Inc. All rights reserved.
机译:土壤水分的变化强烈影响地表能量平衡,区域径流,土地侵蚀和植被生产力(潜在的农作物产量)。因此,在社会的社会,经济,人道主义(粮食安全)和环境领域,土壤水分含量(SMC)的检测非常有价值。提出了一种基于热惯性(TI)的METEOSAT影像光学和热光谱信息估计SMC的方法。时间序列的最小和最大TI值组合在土壤水分饱和指数(SMSI)中。为了将表面转化为土壤剖面值,基于简单的两层水平衡方程(下面的表层和储层)和自相关函数,使用了马尔可夫型过滤器。将每天10天的SMC值与1997年生长季节(3月至10月)在欧洲的10个EUROFLUX站点上进行的放大(使用AVHRR / NDVI)观测值进行比较。此外,将1997年的热惯性方法与8个EUROFLUX站点的ERS散射仪数据进行了比较。 METEOSAT像素按比例放大以适应ERS散射仪的空间分辨率。热惯性方法的回归系数(坡度,截距和R-2)与从EUROFLUX站点观测到的按比例放大的土壤水分的回归系数分别在0.811-1.148,-0.0029-0.66和0.544-0.877之间变化,RRMSE范围为3.9%至35.7%。 ERS散射仪得出的土壤水分指数(SWI)与扩大的土壤水分饱和指数(合并八个EUROFLUX站点)的比较的回归系数分别为0.587、0.105和0.441,RRMSE为38 %。应用于热惯性方法的简单误差传播模型表明,获得的土壤水分含量的绝对和相对误差至少为0.010 m(3)m(-3)或2.0%,SMC为0.203 m(3)m (-3)。建议使用NOAA / AVHRR影像测试和实施TI方法。 (c)2006 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号