...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain
【24h】

Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain

机译:崎terrain地形上晴空地面长波辐射的地形辐射建模和空间缩放

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Longwave radiation (5-100 mu m) is a critical component of the Earth's radiation budget. Most of the existing satellite-based retrieval algorithms are valid only for flat surfaces without accounting for topographic effects. This causes significant errors. Meanwhile, the fixed spatial resolution of remote sensing data makes it difficult to link the satellite-derived longwave radiation to different land models running on various scales. These deficiencies result in an urgent need for topographic modeling and spatial scaling studies of longwave radiation. In this paper, a longwave topographic radiation model (LWTRM) is proposed that quantifies all possible radiation-affecting factors over rugged terrain. For driving the LWTRM, a hybrid method for simultaneously deriving multiple components of longwave radiation from MODIS data is suggested based on artificial neuron networks (ANN) and the radiative transfer simulation. Topographically corrected longwave radiation is then derived by coupling the ANN outputs and LWTRM. Based on this, a general upscaling strategy for longwave radiation is presented. The results demonstrate that: (1) both the proposed LWTRM and the upscaling strategy are rather effective and work well over rugged areas; (2) the ANN-based retrieval method can produce longwave radiation with better accuracy(RMSE <23 W/m(2), bias <9 W/m(2)). More importantly, it can simultaneously derive multiple components of longwave radiation in a consistent manner; (3) over mountainous areas, the radiation cannot be accurately characterized in terms of either spatial distribution or specific values if topographic effects are neglected, for instance, the induced error can reach up to 100 W/m(2) for the longwave net flux; and (4) the topographic effects cannot be ignored below spatial scale of approximately 5 km in the selected study area. (C) 2015 Elsevier Inc All rights reserved.
机译:长波辐射(5-100微米)是地球辐射预算的重要组成部分。大多数现有的基于卫星的检索算法仅在不考虑地形影响的情况下仅对平坦表面有效。这会导致重大错误。同时,由于遥感数据的空间分辨率固定,因此很难将源自卫星的长波辐射与以各种规模运行的不同陆地模型联系起来。这些缺陷导致迫切需要对长波辐射进行地形建模和空间缩放研究。本文提出了一种长波地形辐射模型(LWTRM),该模型可量化崎ifies地形上所有可能的辐射影响因子。为了驱动LWTRM,提出了一种基于人工神经元网络(ANN)和辐射传递模拟同时从MODIS数据中同时导出长波辐射的多个分量的混合方法。然后,通过将ANN输出和LWTRM耦合,得出经地形校正的长波辐射。基于此,提出了一种长波辐射的通用放大策略。结果表明:(1)拟议的LWTRM和升级策略都相当有效,并且可以在崎areas不平的地区正常工作; (2)基于ANN的检索方法可以产生长波辐射,且精度更高(RMSE <23 W / m(2),偏差<9 W / m(2))。更重要的是,它可以以一致的方式同时导出长波辐射的多个分量。 (3)在山区,如果忽略地形影响,则无法根据空间分布或特定值来准确表征辐射,例如,对于长波净通量,感应误差可以达到100 W / m(2) ; (4)在所选研究区域中低于5 km的空间尺度下,地形效应不可忽略。 (C)2015 Elsevier Inc保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号