...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Lidar calibration and validation for geometric-optical modeling with Landsat imagery
【24h】

Lidar calibration and validation for geometric-optical modeling with Landsat imagery

机译:使用Landsat影像进行几何光学建模的激光雷达校准和验证

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

There is a paucity of detailed and timely forest inventory information available for Canada's large, remote northern boreal forests. The Canadian National Forest Inventory program has derived a limited set of attributes from a Landsat-based land cover product representing circa year 2000 conditions. Of the required inventory attributes, forest vertical structure (e.g., tree height) is critical for terrestrial biomass and carbon modeling and to date, is unavailable for these remote areas. In this study, we develop a large-area, fine-scale (25. m) mapping solution to estimate tree height (mean, dominant, and Lorey's height) across Canada's northern forests by integrating lidar data (representing 0.27% of the study area), and Landsat imagery (representing 100% of the study area), using a geometric-optical modeling technique. First, spectral mixture analysis (SMA) was used to extract image endmembers and generate fraction images. Second, lidar data were used to calibrate the inverted geometric-optical model by adjusting the model's three key fractional inputs: sunlit crown, sunlit background, and shade fraction, based upon the SMA derived images. The heterogeneity of the study area, spanning 2.16 million ha, made it challenging to directly and accurately decompose mixed Landsat image pixels into the canopy and background fractions used for the Li-Strahler geometric-optical model inversion. As a result we developed a novel method to use the lidar plot data to facilitate the calculation of these fractions in an accurate and automated manner. The average estimation errors for mean, dominant, and Lorey's height were 4.9. m, 4.1. m, and 4.7. m, respectively when compared to the lidar data, with the best result achieved using dominant tree height, where the average error was 3.5. m for over 80% of the forested area. Using this approach of optical remotely sensed data calibrated and validated with lidar height estimates, we generate and evaluate wall-to-wall estimates of tree height that can subsequently be used as inputs for biomass and carbon modeling.
机译:对于加拿大偏远的北方北方北方大片森林而言,缺乏详细而及时的森林清单信息。加拿大国家森林清单计划从基于Landsat的土地覆盖产品(代表2000年左右的情况)中获得了有限的属性集。在所需的清单属性中,森林垂直结构(例如树高)对于陆地生物量和碳模型至关重要,迄今为止,对于这些偏远地区来说是不可用的。在这项研究中,我们开发了一个大面积,小规模(25. m)的制图解决方案,通过整合激光雷达数据(占研究面积的0.27%)来估计加拿大北部森林的树高(平均,优势和洛雷的高度)。 )和Landsat图像(代表研究区域的100%),并使用了几何光学建模技术。首先,使用光谱混合分析(SMA)提取图像端成员并生成分数图像。其次,基于SMA衍生的图像,激光雷达数据用于通过调整模型的三个关键分数输入来校准倒置的几何光学模型:日光冠,日光背景和阴影分数。研究区域的异质性跨越了216万公顷,这使得将混合的Landsat图像像素直接准确地分解为用于Li-Strahler几何光学模型反演的冠层和背景部分具有挑战性。结果,我们开发了一种新颖的方法来使用激光雷达图数据来以准确和自动化的方式促进这些分数的计算。平均,显性和Lorey身高的平均估计误差为4.9。米,4.1。 m和4.7。分别与激光雷达数据进行比较,结果表明,使用优势树高可获得最佳结果,平均误差为3.5。米占森林面积的80%以上。使用这种通过激光雷达高度估计校准和验证的光学遥感数据的方法,我们可以生成并评估树高的逐壁估计,随后可以将其用作生物量和碳模型的输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号