首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >A satellite snow depth multi-year average derived from SSM/I for the high latitude regions
【24h】

A satellite snow depth multi-year average derived from SSM/I for the high latitude regions

机译:根据SSM / I得出的高纬度地区的卫星雪深多年平均值

获取原文
获取原文并翻译 | 示例
       

摘要

The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide an optimal means to monitor the snowpack over the arctic region. While the temporal evolution of snow extent can be observed globally from microwave radiometers, the determination of the corresponding snow depth is more difficult. A dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from Special Sensor Microwave/ Imager (SSM/I) brightness temperatures and was validated over the U.S. Great Plains and Western Siberia. The purpose of this study is to assess the dynamic algorithm performance over the entire high latitude (land) region by computing a snow depth multi-year field for the time period 1987-1995. This multi-year average is compared to the Global Soil Wetness Project-Phase2 (GSWP2) snow depth computed from several state-of-the-art land surface schemes and averaged over the same time period. The multi-year average obtained by the dynamic algorithm is in good agreement with the GSWP2 snow depth field (the correlation coefficient for January is 0.55). The static algorithm, which assumes a constant snow grain size in space and time does not correlate with the GSWP2 snow depth field (the correlation coefficient with GSWP2 data for January is -0.03), but exhibits a very high anti-correlation with the NCEP average January air temperature field (correlation coefficient -0.77), the deepest satellite snow pack being located in the coldest regions, where the snow grain size may be significantly larger than the average value used in the static algorithm. The dynamic algorithm performs better over Eurasia (with a correlation coefficient with GSWP2 snow depth equal to 0.65) than over North America (where the correlation coefficient decreases to 0.29). (C) 2007 Elsevier Inc. All rights reserved.
机译:高纬度地区的水文循环与季节性积雪有着内在的联系。因此,准确监测雪深和相关的空中覆盖范围是监测全球气候系统的关键问题。无源微波卫星测量提供了一种监测北极地区积雪的最佳方法。虽然可以通过微波辐射计整体观测到积雪程度的时间演变,但确定相应积雪深度却更加困难。已开发出一种动态算法来说明微波散射对雪粒大小的依赖性,以根据特殊传感器微波/成像仪(SSM / I)的亮度温度估算雪深,并已在美国大平原和西西伯利亚进行了验证。本研究的目的是通过计算1987-1995年期间的多年积雪深度来评估整个高纬度(陆地)地区的动态算法性能。将该多年平均值与全球土壤湿度计划第二阶段(GSWP2)的积雪深度进行比较,该积雪深度是根据几种最新的土地表面方案计算得出的,并在同一时期进行了平​​均。通过动态算法获得的多年平均值与GSWP2雪深场吻合良好(1月的相关系数是0.55)。假定空间和时间中雪粒大小恒定的静态算法与GSWP2雪深场不相关(与一月份的GSWP2数据的相关系数为-0.03),但与NCEP平均值具有很高的反相关性一月的空气温度场(相关系数为-0.77),最深的卫星雪堆位于最冷的区域,那里的雪粒大小可能明显大于静态算法中使用的平均值。该动态算法在欧亚大陆(GSWP2雪深的相关系数等于0.65)上比在北美(相关系数降低到0.29)上表现更好。 (C)2007 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号