...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Spatial relationships between snow contaminant content, grain size, and surface temperature from multispectral images of Mt. Rainier, Washington (USA)
【24h】

Spatial relationships between snow contaminant content, grain size, and surface temperature from multispectral images of Mt. Rainier, Washington (USA)

机译:来自山的多光谱图像的雪污染物含量,粒度和表面温度之间的空间关系。美国华盛顿雷尼尔(美国)

获取原文
获取原文并翻译 | 示例

摘要

We use multispectral MODIS/ASTER Airborne Simulator (MASTER) data collected at Mt. Rainier, Washington (USA) to map spatial covariance between snowpack properties and to evaluate techniques for quantitative estimation of reflectance, grain size, and temperature. The late-August MASTER images reveal a distinct pattern of snow contaminant content, grain size, and temperature related to a recent snowfall and late-summer melting. Spatial correlation between grain size and temperature patterns suggests that rapid destructive metamorphism of the fresh snow occurred when temperatures were near 0 degreesC. We use 10 specific locations to evaluate hemispherical-directional reflectance factor (HDRF), grain size, and temperature retrievals. We map relative snow contaminant content using visible (0.4-0.8 gm) HDRF spectra. Atmospheric correction and topographic modeling limit the accuracy of HDRF estimates. We use MASTER-derived spectra near 1.8 and 2.2 mum to estimate optical grain size (by comparison to modeled layers of ice spheres) and physical grain size (by comparison to measured spectra with known physical grain size and by correlation to ground measurements). Estimated physical grain sizes were less than estimated optical grain sizes. Differing definitions of optical and physical grain sizes could contribute to this discrepancy. Limitations at 1.8 and 2.2 mum, including reduced discrimination between larger grain radii (> similar to 500 mum physical, > similar to 200 mum optical) and low signal-to-noise ration with atmospheric effects and decreasing solar irradiance, suggest that grain size retrieval may be improved at other wavelengths (e.g., 1.1 mum). Accounting for uncertainty in emissivity, atmospheric correction, and detector noise, we estimate systematic errors in our radiant temperatures at < 1.8 degreesC. This study shows both strengths and limitations for coregistered visible, short-wave infrared, and thermal infrared images to estimate snowpack properties and reveal their spatial coherence. (C) 2003 Elsevier Science Inc. All rights reserved. [References: 24]
机译:我们使用在山顶收集的多光谱MODIS / ASTER机载模拟器(MASTER)数据。美国华盛顿州的雷尼尔(Rainier,Washington)(美国)绘制积雪性质之间的空间协方差,并评估定量评估反射率,晶粒尺寸和温度的技术。 8月下旬的MASTER图像揭示了与近期降雪和夏末融化有关的雪污染物含量,粒度和温度的明显模式。晶粒尺寸与温度模式之间的空间相关性表明,当温度接近0摄氏度时,新鲜雪便迅速发生破坏性变质。我们使用10个特定的位置来评估半球方向反射系数(HDRF),晶粒尺寸和温度取值。我们使用可见的(0.4-0.8 gm)HDRF光谱图绘制相对的雪污染物含量。大气校正和地形建模限制了HDRF估算的准确性。我们使用1.8和2.2微米附近的MASTER衍生光谱来估计光学晶粒尺寸(通过与冰球建模层比较)和物理晶粒尺寸(通过与已知物理晶粒尺寸的测量光谱进行比较以及与地面测量的相关性)。估计的物理粒度小于估计的光学粒度。光学和物理晶粒尺寸的不同定义可能会导致这种差异。限制在1.8和2.2毫米,包括减小较大的谷物半径(>近似于500微米的物理半径,>近似于200微米的光学半径)和具有大气效应并降低太阳辐照度的低信噪比,这表明晶粒尺寸检索在其他波长(例如1.1μm)下可以得到改善。考虑到发射率,大气校正和探测器噪声的不确定性,我们估计辐射温度在<1.8摄氏度时的系统误差。这项研究显示了共同配准的可见光,短波红外和热红外图像的强度和局限性,以估计积雪的性质并揭示其空间连贯性。 (C)2003 Elsevier Science Inc.保留所有权利。 [参考:24]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号