首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >GLOBAL NET PRIMARY PRODUCTION - COMBINING ECOLOGY AND REMOTE SENSING
【24h】

GLOBAL NET PRIMARY PRODUCTION - COMBINING ECOLOGY AND REMOTE SENSING

机译:全球净初级生产-生态与遥感相结合

获取原文
获取原文并翻译 | 示例
       

摘要

Terrestrial net primary production (NPP) is sensitive to a number of controls, including aspects of climate, topography, soils, plant and microbial characteristics, disturbance, and anthropogenic impacts. Yet, at least at the global scale, models based on very different types and numbers of parameters yield similar results. Part of the reason for this is that the major NPP controls influence each other, resulting, under current conditions, in broad correlations among controls. NPP models that include richer suites of controlling parameters should be more sensitive to conditions that disrupt the broad correlations, but the current paucity of global data limits the power of complex models. Improved data sets will facilitate applications of complex models, but many of the critical data are very difficult to produce, especially for applications dealing with the past or future. It may be possible to overcome some of the challenges of data availability through increased understanding and modeling of ecological processes that adjust plant physiology and architecture in relation to resources. The CASA (Carnegie, Stanford, Ames Approach) model introduced by Potter et al. (1993) and expanded here uses a combination of ecological principles, satellite data, and surface data to predict terrestrial NPP on a monthly time step. CASA calculates NPP as a product of absorbed photosynthetically active radiation, APAR, and an efficiency of radiation use, E. The underlying postulate is that some of the limitations on NPP appear in each. CASA estimates annual terrestrial NPP to be 48 Pg and the maximum efficiency of PAR utilization (epsilon*) to be 0.39 g C MJ(-1) PAR. Spatial and temporal variation in APAR is more than fivefold greater than variation in epsilon. [References: 68]
机译:陆地净初级生产(NPP)对许多控制都很敏感,包括气候,地形,土壤,植物和微生物特征,干扰和人为影响等方面。但是,至少在全球范围内,基于完全不同的参数类型和数量的模型会产生相似的结果。造成这种情况的部分原因是,主要的NPP控件相互影响,从而在当前条件下导致控件之间的广泛关联。包含更丰富的控制参数套件的NPP模型应该对破坏广泛相关性的条件更为敏感,但是当前全球数据的匮乏限制了复杂模型的功能。改进的数据集将促进复杂模型的应用,但是许多关键数据很难生成,尤其是对于处理过去或未来的应用。通过增加对生态过程的理解和建模,可能会克服数据可用性的一些挑战,这些过程会根据资源调整植物的生理和结构。波特等人介绍的CASA(卡内基,斯坦福,埃姆斯方法)模型。 (1993年)并在此进行扩展,结合了生态学原理,卫星数据和地表数据,以每月时间步长预测地面NPP。 CASA将NPP计算为吸收的光合有效辐射APAR和辐射利用效率E的乘积。基本假设是每种NPP都存在一些局限性。 CASA估计每年的陆地NPP为48 Pg,PAR利用的最大效率(ε*)为0.39 g C MJ(-1)PAR。 APAR的时空变化比epsilon的变化大五倍以上。 [参考:68]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号