首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets
【24h】

Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets

机译:根据航天飞机雷达地形任务和国家高程数据集估算植被高度

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A study was conducted to determine the feasibility of obtaining estimates of vegetation canopy height from digital elevation data collected during the 2000 Shuttle Radar Topography Mission (SRTM). The SRTM sensor mapped 80% of the Earth's land mass with a C-band Interferometric Synthetic Aperture Radar (InSAR) instrument, producing the most complete digital surface map of Earth, Due to the relatively short wavelength (5.6 cm) of the SRTM instrument, the majority of incoming electromagnetic energy is reflected by scatterers located within the vegetation canopy at heights well above the "bald-Earth" surface. Interferometric SAR theory provides a basis for properly identifying and accounting for the dependence of this scattering phase center height on both instrument and target characteristics, including relative and absolute vertical error and vegetation structural attributes. An investigation to quantify the magnitude of the vertical error component was conducted using SRTM data from two vegetation-free areas in Iowa and North Dakota, revealing absolute errors of -4.0 and -1.1 m, respectively. It was also shown that the relative vertical error due to phase noise can be reduced significantly through sample averaging. The relative error range for the Iowa site was reduced from 1.3 to 4 m and for the North Dakota site from 7 to 3 m after averaging of 50 samples. Following error reduction, it was demonstrated that the SRTM elevation data can be successfully correlated via linear regression models with ground-measured canopy heights acquired during the general mission timeframe from test sites located in Georgia and California. Prior to outlier removal and phase noise reduction, initial adjusted r{sup}2 values for the Georgia and California sites were 0.15 and 0.20, respectively. Following outlier analysis and averaging of at least 20 SRTM pixels per observation, adjusted r{sup}2 values for the Georgia and California sites improved to 0.79 (rmse=1.1 m) and 0.75 (rmse=4.5 m), respectively. An independent validation of a novel bin-based modeling strategy designed for reducing phase noise in sample plot data confirmed both the robustness of the California model (adjusted r{sup}2=0.74) as well as the capacity of the binning strategy to produce stable models suitable for inversion (validated rmse=4.1 m). The results suggest that a minimum mapping unit of approximately 1.8 ha is appropriate for SRTM-based vegetation canopy height mapping.
机译:进行了一项研究,以确定从2000年航天飞机雷达地形任务(SRTM)期间收集的数字高程数据中获取植被冠层高度估计值的可行性。 SRTM传感器使用C波段干涉合成孔径雷达(InSAR)仪器绘制了80%的地球陆地图,由于SRTM仪器的波长相对较短(5.6 cm),因此可以生成最完整的地球数字地面地图,大部分传入的电磁能由位于植被冠层内部的散射体反射,这些散射体的高度远高于“光秃秃”的表面。干涉SAR理论为正确识别和解释该散射相位中心高度对仪器和目标特征(包括相对和绝对垂直误差以及植被结构属性)的依赖性提供了基础。使用爱荷华州和北达科他州两个无植被区的SRTM数据进行了量化垂直误差分量大小的研究,得出的绝对误差分别为-4.0和-1.1 m。还表明,可以通过样本平均显着降低由于相位噪声引起的相对垂直误差。在平均50个样本后,爱荷华州站点的相对误差范围从1.3 m减小到4 m,北达科他州站点的相对误差范围从7 m减小到3 m。减少误差之后,证明了可以通过线性回归模型将SRTM高程数据与在一般任务时间内从乔治亚州和加利福尼亚州的测试地点获取的地面测得的冠层高度成功地进行关联。在去除异常值和减少相位噪声之前,乔治亚州和加利福尼亚州的初始调整后的r {sup} 2值分别为0.15和0.20。在进行离群值分析并平均每个观察至少20个SRTM像素后,乔治亚州和加利福尼亚州的调整后r {sup} 2值分别提高到0.79(rmse = 1.1 m)和0.75(rmse = 4.5 m)。为减少样本图数据中的相位噪声而设计的一种新颖的基于bin的建模策略的独立验证证实了California模型的稳健性(调整后的r {sup} 2 = 0.74)以及该binning策略产生稳定数据的能力适用于反演的模型(有效值rmse = 4.1 m)。结果表明,约1.8公顷的最小映射单位适用于基于SRTM的植被冠层高度映射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号