首页> 外文期刊>Radiotherapy and oncology: Journal of the European Society for Therapeutic Radiology and Oncology >Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: evaluation of the impact on daily dose coverage.
【24h】

Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: evaluation of the impact on daily dose coverage.

机译:使用4D CT和多相CT图像进行立体定向身体放疗的剂量学比较,用于肺癌的治疗计划:评估对每日剂量覆盖范围的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

PURPOSE: To investigate the dosimetric impact of using 4D CT and multiphase (helical) CT images for treatment planning target definition and the daily target coverage in hypofractionated stereotactic body radiotherapy (SBRT) of lung cancer. MATERIALS AND METHODS: For 10 consecutive patients treated with SBRT, a set of 4D CT images and three sets of multiphase helical CT scans, taken during free-breathing, end-inspiration and end-expiration breath-hold, were obtained. Three separate planning target volumes (PTVs) were created from these image sets. A PTV(4D) was created from the maximum intensity projection (MIP) reconstructed 4D images by adding a 3mm margin to the internal target volume (ITV). A PTV(3CT) was created by generating ITV from gross target volumes (GTVs) contoured from the three multiphase images. Finally, a third conventional PTV (denoted PTV(conv)) was created by adding 5mm in the axial direction and 10mm in the longitudinal direction to the GTV (in this work, GTV=CTV=clinical target volume) generated from free-breathing helical CT scans. Treatment planning was performed based on PTV(4D) (denoted as Plan-1), and the plan was adopted for PTV(3CT) and PTV(conv) to form Plan-2 and Plan-3, respectively, by superimposing "Plan-1" onto the helical free-breathing CT data set using modified beam apertures that conformed to either PTV(3CT) or PTV(conv). We first studied the impact of PTV design on treatment planning by evaluating the dosimetry of the three PTVs under the three plans, respectively. Then we examined the effect of the PTV designs on the daily target coverage by utilizing pre-treatment localization CT (CT-on-rails) images for daily GTV contouring and dose recalculation. The changes in the dose parameters of D(95) and D(99) (the dose received by 95% and 99% of the target volume, respectively), and the V(p) (the volume receiving the prescription dose) of the daily GTVs were compared under the three plans before and after setup error correction. RESULTS: For all 10 patients, we found that the PTV(4D) consistently resulted in the smallest volumes compared with the other PTV's (p=0.005). In general, the plans generated based PTV(3CT) could provide reasonably good coverage for PTV(4D), while the reverse can only achieve 90% of the planned values for PTV(3CT). The coverage of both PTV(4D) and PTV(3CT) in Plan-3 generally reserves the original planned values in terms of D(95), D(99), and V(p,) with the average ratios of 0.996, 0.977, and 0.977, respectively, for PTV(3CT), and 1.025, 1.025, and 1.0, respectively, for PTV(4D). However, it increased the dose significantly to normal lung tissue. Additionally, the plans generated using the PTV(4D) presented an equivalent daily target coverage compared to the plans generated using the PTV(3CT) (p=0.953) and PTV(conv) (p=0.773) after setup error correction. Consequently, this minimized the dose to the surrounding normal lung. CONCLUSION: Compared to the conventional approach using helical images for target definition, 4D CT and multiphase 3D CT have the advantage to provide patient-specific tumor motion information, based on which such designed PTVs could ensure daily target coverage. 4D CT-based treatment planning further reduces the amount of normal lung being irradiated while still providing a good target coverage when image guidance is used.
机译:目的:研究使用4D CT和多相(螺旋)CT图像进行肺癌的超分割立体定向放射治疗(SBRT)的治疗计划目标定义和每日目标覆盖范围的剂量学影响。材料与方法:对于10例接受SBRT治疗的连续患者,获得了一组4D CT图像和三组多相螺旋CT扫描,这些扫描是在自由呼吸,吸气和呼气末屏气期间进行的。从这些图像集中创建了三个单独的计划目标体积(PTV)。通过向内部目标体积(ITV)添加3mm的边距,从最大强度投影(MIP)重建的4D图像创建了PTV(4D)。通过从三个多相图像轮廓绘制的总目标体积(GTV)生成ITV,创建了PTV(3CT)。最终,通过将自由呼吸的螺旋线生成的GTV(在本工作中,GTV = CTV =临床目标体积)增加轴向5mm和纵向10mm,从而创建了第三种常规PTV(表示为PTV(conv))。 CT扫描。治疗计划是根据PTV(4D)(表示为Plan-1)执行的,并且该计划被PTV(3CT)和PTV(conv)采用,通过将“ Plan-使用符合PTV(3CT)或PTV(conv)的改良光束孔径将1“插入螺旋自由呼吸CT数据集。我们首先通过分别评估三个计划下的三个PTV的剂量,研究了PTV设计对治疗计划的影响。然后,我们通过利用治疗前本地化CT(轨道上CT)图像进行每日GTV轮廓绘制和剂量重新计算,检查了PTV设计对每日目标覆盖范围的影响。剂量的D(95)和D(99)(分别达到目标体积的95%和99%的剂量)和V(p)(接受处方剂量的体积)的剂量参数的变化在设置错误校正前后,在这三个计划下对每日GTV进行了比较。结果:对于所有10例患者,我们发现PTV(4D)始终比其他PTV产生最小的体积(p = 0.005)。通常,基于PTV(3CT)生成的计划可以为PTV(4D)提供合理的覆盖范围,而反向功能只能实现PTV(3CT)计划值的90%。计划3中PTV(4D)和PTV(3CT)的覆盖范围通常保留原始计划值D(95),D(99)和V(p,),平均比率为0.996、0.977对于PTV(3CT)分别为0.957和0.977,对于PTV(4D)分别为1.025、1.025和1.0。但是,它显着增加了正常肺组织的剂量。此外,在设置错误校正之后,与使用PTV(3CT)(p = 0.953)和PTV(conv)(p = 0.773)生成的计划相比,使用PTV(4D)生成的计划提供了等效的每日目标覆盖率。因此,这最小化了对周围正常肺的剂量。结论:与使用螺旋图像进行目标定义的常规方法相比,4D CT和多相3D CT具有提供特定于患者的肿瘤运动信息的优势,基于这种设计的PTV可以确保每日目标覆盖。基于4D CT的治疗计划进一步减少了正常肺的照射量,同时在使用图像引导时仍能提供良好的目标覆盖率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号