首页> 外文期刊>Lithos: An International Journal of Mineralogy, Petrology, and Geochemistry >Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit
【24h】

Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit

机译:阿拉莫斯软玉和花岗闪长岩中锆石的矿物包裹体和SHRIMP U-Pb定年:对镁质矽卡岩矿床的成因意义

获取原文
获取原文并翻译 | 示例
       

摘要

Extending approximately 1300 km and located in the Western Kunlun Mountains, the Hetian nephrite belt is the largest nephrite belt in the world and contains approximately 11 major deposits and more than 20 orebodies including the Alamas deposit. Hetian nephrite deposits can be classified as Mg-skarn deposits with Precambrian dolomitic marble host rock and green, green-white and white nephrite zones are distributed gradually in the zone of a granodiorite pluton. The green nephrite is mainly predominately composed of tremolite with generally minor to trace constituents of diopside, grossularitic garnet, actinolite and other minerals. Also green nephrite has higher content of TFe2O3, than green-white and white nephrites have. We subdivided the zircons from the green nephrites into four types, depending on their internal textures, mineral inclusions, and SHRIMP U-Pb ages. Type I zircons are round instead of idiomorphic in shape and lack obvious zoning. Type II and IV zircons have broad, clear oscillatory zoning and are hypidiomorphic or idiomorphic in shape; they contain inclusions of diopside, tremolite, chlorite and calcite. Most Type III zircons are narrow rims (<10 pm) surrounding Type II and Type I zircons with highly luminous brightness and no zoning. Both Type land Type II zircons have individual ages of 411 to 445 Ma and Type IV zircons have younger ages (388 to 406 Ma). Among the concordant ages, 425.7 +/- 5.8 Ma and 420.0 +/- 9.9 Ma for the QYZr1 and QYZr2 are consistent within error, with the 418.5 +/- 2.8 Ma of the Alamas granodiorite formation age and the maximum age of the Alamas nephrite deposit. The partially recrystallization of zircons during skarn formation possibly lead to some younger individual ages (406.5 to 308 Ma). In the Western Kunlun Mountain, both Buya granite and Alamas grandiorite are high Ba-Sr granites and crystallized in Western Kunlun Orogen. The Buya granite formed at about 430 Ma in a post-orogenic tectonic environment. Considering Alamas granodiorite formed at about 12 Ma younger than that of Buya granite and it is convincible that Alamas granodiorite also formed at a post-orogenic tectonic environment. Together with the evolution of Western Kunlun Mountain, it is also possible that high Ba-Sr Alamas granodiorite and the nephrite deposit formed in the post-orogenic stage. Most zircons in the Alamas granodiorite and green nephrite have high Th/U ratios (>0.1), similar REE and trace element patterns, a Ce anomaly (Ce/Ce* > 5), and Sigma REE contents of 454 to 922 ppm and 102 to 3182 ppm with averages of 627 ppm and 855 ppm, respectively. The similar geochemical signatures, morphologies, and ages indicate that most zircons (or fragments of zircon) in the nephrite came from the granodiorite and some experience partially recrystallized during skarnization. This is consistent with the field observation that original granodiorite-dolomitic marble boundary is now represented within a nephrite sequence, with the green nephrite close to the granodiorite and the white/white-green nephrites adjoining the dolomitic marble. Typical skarn deposits experience prograde and retrograde metasomatism stages. According to the field observations and petrographic studies, both prograde metasomatism and the early retrograde altered stages are two main stages for the formation of Alamas nephrite deposits. The replacements of coarse-grained tremolite by fine-grained tremolite (nephrite) lead to the formation of nephrite.
机译:和田软玉地带延伸约1300公里,位于昆仑山西部,是世界上最大的软玉地带,包含大约11个主要矿床和20多个矿体,包括阿拉姆斯矿床。和田软玉矿床可归为镁矽卡岩型矿床,前寒武纪白云岩为大理石岩,绿色,绿白色和白色软玉区逐渐分布在花岗闪长岩体区域。绿和田玉主要由透闪石组成,通常透辉石,透辉石,榴石石榴石,阳起石和其他矿物质的含量很少。同样,绿色软玉具有比绿色白色和白色软玉更高的TFe2O3含量。我们将锆石从绿色软玉分为四个类型,具体取决于其内部纹理,矿物包裹体和SHRIMP U-Pb年龄。 I型锆石呈圆形而不是独特的形状,并且缺乏明显的分区。 II型和IV型锆石具有宽阔清晰的振荡带,形状呈亚同形或亚同形。它们包含透辉石,透闪石,绿泥石和方解石的内含物。大多数III型锆石是围绕II型和I型锆石的窄边(<10 pm),具有很高的发光亮度且没有分区。两种类型的陆地II型锆石的个体年龄都在411至445 Ma之间,而IV型锆石的年龄则更小(388至406 Ma)。在一致年龄中,QYZr1和QYZr2的425.7 +/- 5.8 Ma和420.0 +/- 9.9 Ma一致,误差范围内一致,阿拉木斯花岗闪长岩形成年龄为418.5 +/- 2.8 Ma和阿拉木斯软玉的最大年龄。存款。矽卡岩形成过程中锆石的部分重结晶可能会导致一些较年轻的个体年龄(406.5至308 Ma)。在西部昆仑山中,Buya花岗岩和阿拉玛斯大闪长岩都是高Ba-Sr花岗岩,并在西部昆仑造山带中结晶。在造山后构造环境中,Buya花岗岩形成于约430 Ma。考虑到阿拉木斯花岗闪长岩比布亚花岗岩年轻约12 Ma形成,可以说服阿拉木斯花岗闪长岩也是在造山后构造环境中形成的。连同西部昆仑山的演化,高Ba-Sr Alamas花岗闪长岩和软玉沉积物也可能在造山后阶段形成。 Alamas花岗闪长岩和绿色软玉中的大多数锆石具有较高的Th / U比(> 0.1),相似的REE和微量元素模式,Ce异常(Ce / Ce *> 5)和Sigma REE含量为454至922 ppm和102达到3182 ppm,平均分别为627 ppm和855 ppm。相似的地球化学特征,形态和年龄表明,软玉中的大多数锆石(或锆石碎片)都来自花岗闪长岩,在矽卡岩化过程中有些经历了部分重结晶。这与现场观察一致,即现在在软玉序列内代表原始的花岗闪长岩-白云岩大理石边界,绿色的软玉和接近的花岗闪石,白色/白色绿色的软玉与白云岩大理石相邻。典型的矽卡岩沉积物经历渐进和逆交交阶段。根据现场观察和岩石学研究,前进变质作用和逆行早期改变阶段都是形成阿拉马斯软玉沉积物的两个主要阶段。细晶透闪石(软玉)替代粗晶透闪石导致了软玉的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号