首页> 外文期刊>Reports on Progress in Physics >Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory
【24h】

Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory

机译:非晶态聚合物的结构和动力学:与实验和理论相比的计算机模拟

获取原文
获取外文期刊封面目录资料

摘要

This contribution considers recent developments in the computer modelling of amorphous polymeric materials. Progress in our capabilities to build models for the computer simulation of polymers from the detailed atomistic scale up to coarse-grained mesoscopic models, together with the ever-improving performance of computers, have led to important insights from computer simulations into the structural and dynamic properties of amorphous polymers. Structurally, chain connectivity introduces a range of length scales from that of the chemical bond to the radius of gyration of the polymer chain covering 2-4 orders of magnitude. Dynamically, this range of length scales translates into an even larger range of time scales observable in relaxation processes in amorphous polymers ranging from about 10(-13) to 10(-3) s or even to 10(3) s when glass dynamics is concerned. There is currently no single simulation technique that is able to describe all these length and time scales efficiently. On large length and time scales basic topology and entropy become the governing properties and this fact can be exploited using computer simulations of coarse-grained polymer models to study universal aspects of the structure and dynamics of amorphous polymers. On the largest length and time scales chain connectivity is the dominating factor leading to the strong increase in longest relaxation times described within the reptation theory of polymer melt dynamics. Recently, many of the universal aspects of this behaviour have been further elucidated by computer simulations of coarse-grained polymer models. On short length scales the detailed chemistry and energetics of the polymer are important, and one has to be able to capture them correctly using chemically realistic modelling of specific polymers, even when the aim is to extract generic physical behaviour exhibited by the specific chemistry. Detailed studies of chemically realistic models highlight the central importance of torsional dynamics in all relaxation processes in polymer materials. Finally, the interplay between local energetics, both intramolecular and intermolecular, and the local packing governs the glass transition in polymer melts.
机译:该贡献考虑了无定形聚合物材料的计算机建模的最新进展。从详细的原子尺度到粗粒度的介观模型,我们为聚合物的计算机模拟建立模型的能力的进步,以及计算机性能的不断提高,已导致从计算机模拟中获得对结构和动态特性的重要见解。无定形聚合物。从结构上讲,链连接性引入了一系列长度范围,从化学键到聚合物链的旋转半径(覆盖2-4个数量级)。动态地,当玻璃动力学为时,在无定形聚合物的弛豫过程中,该长度刻度范围转化为更大的时间刻度范围,范围从约10(-13)到10(-3)s甚至到10(3)s。关心。当前,没有任何一种仿真技术能够有效地描述所有这些长度和时间尺度。在较大的长度和时间尺度上,基本的拓扑结构和熵成为支配性,可以通过使用计算机模拟粗粒聚合物模型来研究这一事实,以研究非晶态聚合物结构和动力学的通用方面。在最大的长度和时间尺度上,链连接性是导致最长的弛豫时间大幅增加的主要因素,在聚合物熔体动力学的抽象理论中描述了这种情况。近来,这种行为的许多普遍方面已经通过对粗粒聚合物模型的计算机模拟得到了进一步阐明。在短距离尺度上,聚合物的详细化学性质和能量学很重要,即使目的是提取特定化学物质表现出的一般物理行为,也必须能够使用特定聚合物的化学逼真模型正确地捕获它们。化学逼真的模型的详细研究突显了扭转动力学在聚合物材料所有松弛过程中的核心重要性。最后,分子内和分子间的局部高能之间的相互作用以及局部堆积控制着聚合物熔体中的玻璃化转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号