...
首页> 外文期刊>Radiation Research: Official Organ of the Radiation Research Society >Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections
【24h】

Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections

机译:径向二次电子剂量分布和离子束中的生物效应,基于使用扭曲波横截面的解析和蒙特卡洛计算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for H-1(+), He-4(2+) and Li-6(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV H-1(+), 2 MeV He-4(2+) and 3 MeV Li-6(3+) are almost the same, with about 30% more delta electrons in the sub keV range from He-4(2+) and Li-6(3+) compared to H-1(+). A similar behavior is also seen for 1 MeV H-1(+), 4 MeV He-4(2+) and 6 MeV Li-6(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile. (C) 2008 by Radiation Research Society.
机译:为了加快剂量计算,已经开发了一种分析笔形束方法来计算由于二次电子引起的平均径向剂量分布,二次电子是由水中的轻离子驱动而运动的。为了比较,还确定了使用蒙特卡洛技术计算的径向剂量分布。已对所得的H-1(+),He-4(2+)和Li-6(3+)离子的布拉格峰进行径向剂量分布的精确比较。使用连续畸变波-本征初始态方法(CDW-EIS)计算了二次电子产生的双微分截面。对于生成的二次电子,分析情况下的径向剂量分布基于广义的高斯铅笔束方法,并且使用蒙特卡洛代码PENELOPE计算中心轴深度剂量分布。在蒙特卡洛的情况下,PENELOPE代码用于基于CDW数据计算整个径向剂量分布。目前的笔形光束和蒙特卡洛计算在所有半径上都非常吻合。蒙特卡罗方法和笔形束方法均可以清楚地看到,与传统的1 / r(2)相比,小半径处的径向剂量分布更浅,大半径处的半径分布更陡。不出所料,由于弹丸速度相同,因此0.5 MeV H-1(+),2 MeV He-4(2+)和3 MeV Li-6(3+)的布拉格峰离子的剂量分布几乎相同相同,与H-1(+)相比,亚keV范围内的He-4(2+)和Li-6(3+)的增量电子多30%。对于1 MeV H-1(+),4 MeV He-4(2+)和6 MeV Li-6(3+),也可以看到类似的行为,传统上,所有这些都希望具有相同的二次电子截面。结果令人鼓舞,并表明了一种计算平均径向剂量分布的快速准确的方法。 (C)辐射研究学会,2008年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号