...
首页> 外文期刊>Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion >Experimental study of graded bandgap Cu(InGa)(SeS)(2) thin films grown on glass/molybdenum substrates by selenization and sulphidation
【24h】

Experimental study of graded bandgap Cu(InGa)(SeS)(2) thin films grown on glass/molybdenum substrates by selenization and sulphidation

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

High-performance Cu(InGa)(SeS)(2) (CIGSS) thin film absorbers with an intentionally graded bandgap structure grown by a two-stage method have been studied. Materials obtained from Showa Shell Sekiyu K.K., Japan have been grown using selenization and sulphidation of the Mo/Cu-Ga/In stacked precursors. Full characterizations have been carried out using X-ray diffraction, Raman, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence, inductively coupled plasma mass spectroscopy, glow discharge optical emission spectroscopy (GDOES) and photoelectrochemical (PEC) techniques to study various properties. The material layers were found to be polycrystalline with the (112) preferred orientation, and the largest grains were about 2 mum. Raman measurements show the presence of at least five different phases within the material. XPS confirmed the copper depletion and the richness of sulphur at the top surface region. Although the PEC studies indicate the overall electrical conductivity of the layer as p-type, GDOES profiling reveals the segregation of different phases at different depths suggesting the possibility of having buried junctions within the material itself. The results are presented together with suggestions for further improvements of CIGSS solar cell material. (C) 2004 Elsevier B.V. All rights reserved.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号