...
首页> 外文期刊>Linear Algebra and its Applications >Principal submatrices of co-order one with the biggest Perron root
【24h】

Principal submatrices of co-order one with the biggest Perron root

机译:具有最大Perron根的共阶1的主子矩阵

获取原文
获取原文并翻译 | 示例

摘要

Let A be an irreducible nonnegative matrix, w be any of its indices, and A - w be the principal submatrix of co-order one obtained from A by deleting the wth column and row. Denote by V-ext(A) the set of indices to such that A - w has the biggest Perron root (among all the principal submatrices of co-order one of the original matrix A). We prove that exactly one Jordan block corresponds to the Perron root lambda(A - w) of A - w for every w is an element of V-ext (A). If its size is strictly greater than one for some w is an element of V-ext(A), then the original matrix A is permutationally similar to a lower Hessenberg matrix with positive entries on the superdiagonal and in the left lower corner (in other words, the digraph D(A) of A has a Hamiltonian circuit and its diameter is one less than its order). In the opposite case for any w is an element of V-ext(A), there is a unique path gamma = {wi}(i=0)(p) going through w in D (A) such that(1) A - w(i) has the biggest Perron root for i = 0, ..., p;(2) A - w(0) has a right positive Perron eigenvector;(3) A - w(p) has a left positive Perron eigenvector;(4) A - w(i) has neither a left nor a right positive Perron eigenvector for i = 1, ..., p - 1.Thus, by the spectral criterion for a nonnegative matrix to be irreducible, the submatrices A - w(0),..., A - w(p) combined inherit the property of irreducibility. We also show that A - w is irreducible for every w is an element of V-ext(A) if any of the following holds:(1) A is symmetric;(2) every column (row) of A has at least two positive nondiagonal entries;(3) A has at least two columns (rows) all of whose entries are positive.If A is an irreducible tournament matrix, then either A - w is also irreducible for any w is an element of V-ext(A) or there exist exactly two indices w(in) and w(out) in V-ext(A) such that A - W-in and A - w(out) are reducible. In the last case any other principal submatrix of co-order one is irreducible. This shows that in the general case, a one-vertex-deleted subdigraph with the biggest Perron root need not have the best connectivity properties among all one-vertex-deleted subdigraphs of a given strongly connected digraph D. (C) 2004 Elsevier Inc. All rights reserved.
机译:设A是一个不可约的非负矩阵,w是它的任何索引,A-w是通过删除wth列和行从A获得的共阶1的主子矩阵。用V-ext(A)表示的索引集,以使A-w具有最大的Perron根(在原始矩阵A的所有共阶主矩阵中)。我们证明,每个w是V-ext(A)的元素,恰好一个Jordan块对应于A-w的Perron根lambda(A-w)。如果对于某些w,它的大小严格大于1,则它是V-ext(A)的元素,则原始矩阵A在置换上类似于较低Hessenberg矩阵,在超对角线和左下角处有正项(在其他换句话说,A的图D(A)具有哈密顿回路,并且其直径比其阶小1。在相反的情况下,对于任何w是V-ext(A)的元素,在D(A)中有一条唯一的路径gamma = {wi}(i = 0)(p)穿过w,使得(1)A -w(i)具有最大的Perron根,其中i = 0,...,p;(2)A-w(0)具有右正的Perron本征向量;(3)A-w(p)具有左正的Perron特征向量;(4)对于i = 1,...,p-1,A-w(i)既没有左又没有正的Perron特征向量,因此,根据非负矩阵不可约的频谱准则,子矩阵A-w(0),...,A-w(p)组合继承了不可约性。我们还表明,如果满足以下任何条件,则对于每一个w是V-ext(A)的元素,A-w是不可约的:(1)A是对称的;(2)A的每一列(行)至少具有两个(3)A至少有两列(行),所有列均为正数。如果A是不可约的比赛矩阵,则A-w也不可约,因为任何w是V-ext( A)或在V-ext(A)中恰好存在两个索引w(in)和w(out),使得A-W-in和A-w(out)是可约的。在最后一种情况下,任何其他共阶主矩阵都是不可约的。这表明,在一般情况下,具有给定的强连通图D的所有单顶点删除的子图中,具有最大Perron根的单顶点删除的子图不必具有最佳的连通性。(C)2004 Elsevier Inc.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号