首页> 外文期刊>Low temperature physics: Simultaneous Russian - English publication >Torsional oscillation of vortex tangles. Possible applications to oscillations of solid ~4He
【24h】

Torsional oscillation of vortex tangles. Possible applications to oscillations of solid ~4He

机译:旋涡缠结的扭转振荡。固体〜4He振荡的可能应用

获取原文
获取原文并翻译 | 示例
           

摘要

Torsional oscillation of vessels containing quantum fluids are one of oldest and most popular methods for the study of quantized vortices. One recent and very brilliant example is the discovery of the supersolidity of solid helium. In torsional oscillation experiments, a drop in the period of the oscillations is observed when some low temperature is reached. This effect has been attributed to the appearance of the superfluid component. It depends on many factors and has various explanations. But, assuming (at least hypothetically, at this stage) that the phenomenon of "supersolidity" (dissipationless flow) does occur, we must consider the relaxation of a vortex system (we can call it a vortex tangle, vortex fluid, chaotic set of vortices, etc.). This is necessary because the only way to involve the superfluid component in rotation is through polarized vortices (with nonzero mean polarization along their axis of rotation). Here we consider a vortex tangle relaxation model for the torsional oscillation response of quantum systems, with the aim of using it to study solid ~4He. It is shown that the rotation of the superfluid component occurs as a relaxation effect with a relaxation time that depends on the amplitude of the oscillations (as well as on temperature and pressure). This problem has a quasi-linear solution which explains the (amplitude dependent) shift in the period. There is also an imaginary shift of the frequency (also amplitude dependent), which represents an additional dissipation. The theoretical results are compared with recent measurements.
机译:包含量子流体的容器的扭转振荡是研究量化涡旋的最古老和最受欢迎的方法之一。最近的一个非常出色的例子是发现了固态氦的超固体。在扭转振荡实验中,当达到某个低温时,会观察到振荡周期的下降。该作用归因于超流体组分的出现。它取决于许多因素,并有各种解释。但是,假设(至少在此阶段假设)确实发生了“超固体”(无耗散流动)现象,我们必须考虑涡旋系统的弛豫(我们可以称其为涡旋缠结,涡旋流体,混沌集)。漩涡等)。这是必要的,因为使超流体成分参与旋转的唯一方法是通过极化涡流(沿其旋转轴具有非零的平均极化)。在这里,我们考虑一个用于量子系统扭转振动响应的涡旋缠结松弛模型,目的是用来研究固体〜4He。结果表明,超流体成分的旋转以松弛效应的形式出现,其松弛时间取决于振荡的幅度(以及温度和压力)。这个问题有一个准线性解决方案,它解释了周期中(与振幅有关)的偏移。频率还有一个假想的偏移(也取决于幅度),这表示附加的耗散。理论结果与最近的测量结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号