首页> 外文期刊>Laser Focus World: The Magazine for the Photonics & Optoelectronics Industry >S-band amplification challenges developers: Raman amplification is the leading method, but several other techniques are also under investigation to allow the move to the next frontier for optical amplification
【24h】

S-band amplification challenges developers: Raman amplification is the leading method, but several other techniques are also under investigation to allow the move to the next frontier for optical amplification

机译:S波段放大对开发人员构成挑战:拉曼放大是领先的方法,但其他几种技术也正在研究中,以允许转移到下一领域进行光学放大

获取原文
获取原文并翻译 | 示例
           

摘要

The next logical frontier for optical amplification is the S-band, which the International Telecommunications Union has defined as wavelengths from 1460 to 1530 nm. The S-band FIGURE 1. Raman is adjacent to the standard erbium-fiber a 1410-nm pump p amplifier C-band at 1530 to 1565 nm, without the bend-sensitive losses that become significant beyond the 1625-nm end of the L-band. A few "hero experiments' have already used S-band amplification to transmit extremely high data rates through single fibers. Last year's record-setting demonstration of 10.92-Tbit/s transmission through a single fiber included 85 channels in the S-barid. The collapse of the telecommunications bubble last year eased near-term demand for higher fiber transmission capacity, but progress on S-band amplifiers continues. Developers face some important technical challenges. As defined by the ITU, the S-band spans 70 nm, twice the 35-nm width of the C band in wavelength units (and more than double it in frequency units). It's likely that two types of amplifiers may be needed to span the entire S-band with reasonably uniform gain. Some developers informally recognize that possibility by. splitting off the S+ band at 1450 to 1490 nm from an S-band shortened to 1490 to 1530 nm. So far the leading approaches are Raman fiber amplifiers and thulium-doped fiber amplifiers, which can be combined to make hybrid amplifiers like those used to flatten gain profiles in the erbium-fiber band. A few other approaches are under development, including specially designed erbium-fiber amplifiers.
机译:光学放大的下一个逻辑边界是S波段,国际电信联盟已将其定义为1460至1530 nm的波长。 S波段图1.拉曼与标准光纤相邻,在1530至1565 nm处为1410 nm抽运p放大器C波段,没有弯曲敏感的损耗,该损耗在L的1625 nm端以外变得很大。 -带。一些“英雄实验”已经使用S波段放大来通过单根光纤传输极高的数据速率。去年创纪录的展示了通过单根光纤传输10.92-Tbit / s的记录,其中S-barid中包含85个通道。去年电信泡沫的破裂缓解了对更高光纤传输容量的近期需求,但S波段放大器的发展仍在继续,开发人员面临着一些重要的技术挑战,按照ITU的定义,S波段的跨度为70 nm,是ITU的两倍。 C波段的宽度为35 nm(以波长为单位)(是频率单位的两倍多),可能需要两种类型的放大器来以合理的均匀增益跨越整个S波段。一些开发人员非正式地意识到了这种可能性通过将1450至1490 nm的S +频段从缩短至1490至1530 nm的S频段分离出来,到目前为止,领先的方法是拉曼光纤放大器和掺th光纤放大器,它们可以组合使用ke混合放大器,例如用于平坦化光纤频带中的增益分布的放大器。其他一些方法正在开发中,包括专门设计的光纤放大器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号