...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Solvatochromism in CationicMicellar Soutions: Effects of the Molecualr Structures of the Solvatochromic Probe and the Surfactant Headgroup
【24h】

Solvatochromism in CationicMicellar Soutions: Effects of the Molecualr Structures of the Solvatochromic Probe and the Surfactant Headgroup

机译:阳离子胶束溶液中的溶剂变色:溶剂变色探针和表面活性剂头基的分子结构的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The solvatochromicbehaviorof2, 6-diphenyl-4-(2,4,6-triphenyl-l-pyridinio )-l-ph 4-(2.4,6-triphenyl-l-pyridinio)-I-phenolate (WE), I-methyl-8-oxyquinolinium betaine (QE), and sodium I-methyl-8-oxyquinoliniumbetaine 5-sulfonate (QES) has been studied as a function of increasing the length of R in the series C12H25N+R3Er~ (R = methyl, ethyl, n-propyl, arld n-butyl). The microscopic polarity ofater at thesolubi~ization site of the micelle-bound probe, ET in kcaVmol, has been calculated from the position ofits intramolecular charge-transfer band in the UV-vis region. Calculated polarities depend on the length ofR and the probe structure and charge. This is attributed to gradual "dehydration" of the interfacial region as a function of the increasing length ofR, and different (average) solubilization sites of the probes. Thus, hydrophobic RE and WE are located in a less polar environment than hydrophilic QE and QES. These conclusions have been confirmed by measuring lH NMR chemical shifts of the discrete protons of both surfactant and probes. The "effective" water concentration at the probe solubilization site, [wat~r]jnterfacjal,has been cal~ulated ~rom solvatochro?1ic data in bulk aqueous I-propanol and .aqueous 1,4-dIoxane. Both reference bInary mIxtures gave consIstent [water]intert"acial; our data also agree wIth those based on the use of a micelle-bound arenediazonium ion.
机译:2,6-二苯基-4-(2,4,6-三苯基-1-吡啶基)-1-ph 4-(2.4,6-三苯基-1-吡啶基)-1-酚盐(WE),I-甲基的溶剂化变色行为研究了-8-氧喹啉甜菜碱(QE)和I-甲基-8-氧喹啉甜菜碱5磺酸钠(QES)作为增加C12H25N + R3Er系列中R的长度的函数(R =甲基,乙基,正丙基,正丁基)。根据其分子内电荷转移带在UV-vis区域的位置,计算了胶束结合探针的增溶位点的微极性,kcaVmol中的ET。计算出的极性取决于R的长度以及探针的结构和电荷。这归因于界面区域随着“ R”长度的增加以及探针的不同(平均)增溶位点而逐渐“脱水”。因此,疏水性RE和WE与亲水性QE和QES相比极性更弱。通过测量表面活性剂和探针的离散质子的1 H NMR化学位移已证实了这些结论。已经从大量异丙醇水溶液和1,4-二氧六环水溶液中的溶剂化数据计算了探针溶解位点“有效”的水浓度。两种参考混合物均提供了有效的[水]界面;我们的数据也与基于胶束结合的芳基重氮离子的使用相一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号