首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Long chain n-alkanes at SiO2/air interfaces: Molecular ordering, annealing, and surface freezing of triacontane in the case of excess and submonolayer coverage
【24h】

Long chain n-alkanes at SiO2/air interfaces: Molecular ordering, annealing, and surface freezing of triacontane in the case of excess and submonolayer coverage

机译:SiO2 /空气界面处的长链正构烷烃:在过量和亚单层覆盖情况下,三金刚烷的分子有序化,退火和表面冻结

获取原文
获取原文并翻译 | 示例
           

摘要

We present a comprehensive study on the interfacial molecular ordering of an n-alkane, triacontane, at the SiO2/air interface, for submonolayer and excess coverage. The molecular ordering was studied by X-ray diffraction and reflectivity at temperatures from far below bulk melting to above the surface freezing temperature. It is found that the phase behavior of bulk and that of interfacial triacontane are quite different. From the literature it is known that bulk triacontane has three solid phases: one crystalline phase (monoclinic) and two rotator phases (RIII and RIV) with solid/solid transitions at, approximate to61degreesC and close to the melting point into the liquid phase (approximate to67degreesC), respectively. All solid bulk phases have inclined molecules. We show that interfacial triacontane has only two ordered solid phases: a crystalline phase (orthorhombic) and a rotator phase. In both phases the molecules are oriented normal to the interface. At the interface, the temperature of the transition from the crystalline phase to the rotator phase can be as low as 40degreesC. For both submonolayer and excess coverage, the interfacial rotator phase can persist up to 70degreesC. This means that above 67degreesC, for excess coverage, the solid rotator phase coexists with liquid bulk triacontane ("surface freezing"). The different phase behavior in bulk and at the interface is explained with different interlayer interactions. We also find that, directly after solidification, the interfacial layer is usually in a highly amorphous, nonequilibrium state. This we attribute to rapid solidification because of the efficient cooling at the interface. Depending on thermal treatment and time, the interfacial layer can anneal to various degrees of molecular ordering, which is reflected in the phase behavior. [References: 50]
机译:我们目前对SiO2 /空气界面上的正烷烃,三烷烃的界面分子有序性进行了全面的研究,以研究亚单层和过量覆盖的问题。通过X射线衍射和在远低于本体熔化的温度至高于表面冻结温度的温度下的反射率研究了分子有序性。结果发现,本体相和界面金刚烷相的行为有很大的不同。从文献中知道,本体三金刚烷具有三个固相:一个结晶相(单斜晶)和两个旋转相(RIII和RIV),其固相/固相转变温度约为61摄氏度,接近于液相的熔点(近似到67摄氏度)。所有固体本体相均具有倾斜的分子。我们表明,界面金刚烷只有两个有序的固相:结晶相(斜方晶)和旋转相。在两个阶段中,分子的取向均垂直于界面。在界面处,从结晶相到旋转相的转变温度可以低至40摄氏度。对于亚单层和过量覆盖,界面旋转相可持续高达70摄氏度。这意味着在67℃以上,对于过量覆盖,固体旋转相与液体本体三tri烷共存(“表面冻结”)。通过不同的层间相互作用来解释本体和界面处的不同相行为。我们还发现,直接在凝固后,界面层通常处于高度非晶态,非平衡状态。由于界面处的有效冷却,我们将其归因于快速凝固。取决于热处理和时间,界面层可以退火至各种程度的分子有序化,这反映在相行为中。 [参考:50]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号