首页> 外文期刊>Lab on a chip >Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment
【24h】

Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment

机译:用于3D细胞对齐的微流控芯片中的梯度静态应变刺激

获取原文
获取原文并翻译 | 示例
       

摘要

Cell alignment is a critical factor to govern cellular behavior and function for various tissue engineering applications ranging from cardiac to neural regeneration. In addition to physical geometry, strain is a crucial parameter to manipulate cellular alignment for functional tissue formation. In this paper, we introduce a simple approach to generate a range of gradient static strains without external mechanical control for the stimulation of cellular behavior within 3D biomimetic hydrogel microenvironments. A glass-supported microfluidic chip with a convex flexible polydimethylsiloxane (PDMS) membrane on the top was employed for loading the cells suspended in a prepotymer solution. Following UV crosslinking through a photomask with a concentric circular pattern, the cell-laden hydrogels were formed in a height gradient from the center (maximum) to the boundary (minimum). When the convex PDMS membrane retracted back to a flat surface, it applied compressive gradient forces on the cell-laden hydrogels. The concentric circular hydrogel patterns confined the direction of hydrogel elongation, and the compressive strain on the hydrogel therefore resulted in elongation stretch in the radial direction to guide cell alignment. NIH3T3 cells were cultured in the chip for 3 days with compressive strains that varied from -65% (center) to -15% (boundary) on hydrogels. We found that the hydrogel geometry dominated the cell alignment near the outside boundary, where cells aligned along the circular direction, and the compressive strain dominated the cell alignment near the center, where cells aligned radially. This study developed a new and simple approach to facilitate cellular alignment based on hydrogel geometry and strain stimulation for tissue engineering applications. This platform offers unique advantages and is significantly different from the existing approaches owing to the fact that gradient generation was accomplished in a miniature device without using an external mechanical source.
机译:细胞排列是控制细胞行为和功能的关键因素,适用于从心脏再生到神经再生的各种组织工程应用。除物理几何形状外,应变也是操纵细胞排列以形成功能性组织的关键参数。在本文中,我们介绍了一种无需外部机械控制即可生成一系列梯度静态应变的简单方法,以刺激3D仿生水凝胶微环境中的细胞行为。使用在顶部具有凸形柔性聚二甲基硅氧烷(PDMS)膜的玻璃支撑微流控芯片加载悬浮在预聚体溶液中的细胞。通过具有同心圆形图案的光掩模进行UV交联后,形成的载有细胞的水凝胶以从中心(最大)到边界(最小)的高度梯度形成。当凸出的PDMS膜回缩到平坦表面时,它将压缩梯度力施加到充满细胞的水凝胶上。同心的圆形水凝胶图案限制了水凝胶的延伸方向,因此水凝胶上的压缩应变导致沿径向的伸长拉伸,从而指导细胞排列。 NIH3T3细胞在芯片中培养3天,压缩应变在水凝胶上从-65%(中心)到-15%(边界)不等。我们发现,水凝胶的几何形状主导着细胞外沿附近的细胞排列,细胞沿圆形方向排列,而压缩应变主导着细胞中心附近的细胞排列,其中细胞沿径向排列。这项研究开发了一种新的简单方法来促进基于水凝胶几何形状和应变刺激的细胞排列,用于组织工程应用。该平台具有独特的优势,并且由于在不使用外部机械源的情况下在微型设备中完成了梯度生成这一事实,因此与现有方法有很大不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号