...
首页> 外文期刊>Lab on a chip >Valve-based microfluidic compression platform: single axon injury and regrowth
【24h】

Valve-based microfluidic compression platform: single axon injury and regrowth

机译:基于瓣膜的微流体压缩平台:单轴突损伤和再生长

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We describe a novel valve-based microfluidic axon injury micro-compression (AIM) platform that enables focal and graded compression of micron-scale segments of single central nervous system (CNS) axons. The device utilizes independently controlled "push-down" injury pads that descend upon pressure application and contact underlying axonal processes. Regulated compressed gas is input into the AIM system and pressure levels are modulated to specify the level of injury. Finite element modeling (FEM) is used to quantitatively characterize device performance and parameterize the extent of axonal injury by estimating the forces applied between the injury pad and glass substrate. In doing so, injuries are normalized across experiments to overcome small variations in device geometry. The AIM platform permits, for the first time, observation of axon deformation prior to, during, and immediately after focal mechanical injury. Single axons acutely compressed (~5 s) under varying compressive loads (0-250 kPa) were observed through phase time-lapse microscopy for up to 12 h post injury. Under mild injury conditions (< 55 kPa) ~73% of axons continued to grow, while at moderate (55-95 kPa) levels of injury, the number of growing axons dramatically reduced to 8%. At severe levels of injury (> 95 kPa), virtually all axons were instantaneously transected and nearly half (~46%) of these axons were able to regrow within the imaging period in the absence of exogenous stimulating factors.
机译:我们描述了一种新型的基于瓣膜的微流轴突损伤微压缩(AIM)平台,该平台可对单个中枢神经系统(CNS)轴突的微米级节进行局部和分级压缩。该设备利用独立控制的“下推式”损伤垫,该损伤垫在施加压力时下降并接触到潜在的轴突过程。调节后的压缩气体被输入AIM系统,并调节压力水平以指定伤害程度。有限元建模(FEM)用于通过估计损伤垫和玻璃基板之间施加的力来定量表征设备性能并参数化轴突损伤的程度。这样,可以跨实验对伤害进行归一化,以克服设备几何形状的微小变化。 AIM平台首次允许在局部机械损伤之前,之中和之后立即观察轴突变形。通过相延时显微镜在受伤后长达12小时内观察到了在变化的压缩载荷(0-250 kPa)下被急剧压缩的单轴突(〜5 s)。在轻度损伤条件下(<55 kPa),约73%的轴突继续生长,而在中度损伤水平(55-95 kPa)下,生长中的轴突数目急剧减少至8%。在严重的损伤水平(> 95 kPa)下,几乎所有轴突均被瞬时横断,并且在没有外源刺激因子的情况下,这些轴突中的近一半(〜46%)能够在成像期内重新生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号