...
首页> 外文期刊>Lab on a chip >Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids
【24h】

Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids

机译:使用不溶混的液体通过e逝波进行光流受限成像,光谱和纳米颗粒计数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Conventional flow cytometry (FC) suffers from the diffraction limit for the detection of nanoparticles smaller than 100 nm, whereas traditional total internal reflection (TIR) microscopy can only detect few samples near the solid-liquid interface mostly in static states. Here we demonstrate a novel on-chip optofluidic technique using evanescent wave sensing for single nanoparticle real time detection by combining hydrodynamic focusing and TIR using immiscible flows. The immiscibility of the high-index sheath flow and the low-index core flow naturally generate a smooth, flat and step-index interface that is ideal for the TIR effect, whose evanescent field can penetrate the full width of the core flow. Hydrodynamic focusing can focus on all the nanoparticles in the extreme centre of the core flow with a width smaller than 1 mu m. This technique enables us to illuminate every single sample in the running core flow by the evanescent field, leaving none unaffected. Moreover, it works well for samples much smaller than the diffraction limit. We have successfully demonstrated the scattering imaging and counting of 50 nm and 100 nm Au nanoparticles and also the fluorescence imaging and counting of 200 nm beads. The effective counting speeds are estimated as 1500, 2300 and 2000 particles per second for the three types of nanoparticles, respectively. The optical scattering spectra were also measured to determine the size of individual Au nanoparticles. This provides a new technique to detect nanoparticles and we foresee its application in the detection of molecules for biomedical analyses.
机译:常规的流式细胞术(FC)受到检测小于100 nm纳米颗粒的衍射极限的困扰,而传统的全内反射(TIR)显微镜只能在几乎处于静态的固液界面附近检测到少量样品。在这里,我们展示了一种利用e逝波感测技术对单纳米颗粒进行实时检测的新颖片上光流体技术,该技术可以通过使用不混溶流将流体动力学聚焦和TIR相结合来实现。高折射率鞘层流和低折射率芯层流的不混溶性自然会产生光滑,平坦和阶跃折射率的界面,这对于TIR效果是理想的,其瞬逝场可以穿透芯层流的整个宽度。流体动力聚焦可以聚焦在芯流极端中心的所有纳米粒子,其宽度小于1微米。这项技术使我们能够通过渐逝场照亮正在运行的岩心流中的每个样本,而不会影响任何样本。而且,它对于远小于衍射极限的样品也能很好地工作。我们已经成功地证明了50 nm和100 nm Au纳米颗粒的散射成像和计数,以及200 nm珠的荧光成像和计数。对于三种类型的纳米粒子,有效计数速度分别估计为每秒1500、2300和2000个粒子。还测量了光散射光谱以确定单独的Au纳米颗粒的尺寸。这提供了一种检测纳米颗粒的新技术,并且我们预见了其在生物医学分析分子检测中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号