首页> 外文期刊>Lab on a chip >Sequential processing from cell lysis to protein assay on a chip enabling the optimization of an Fx-ATPase single molecule assay condition
【24h】

Sequential processing from cell lysis to protein assay on a chip enabling the optimization of an Fx-ATPase single molecule assay condition

机译:从细胞裂解到芯片上蛋白质测定的顺序处理可优化Fx-ATPase单分子测定条件

获取原文
获取原文并翻译 | 示例
       

摘要

We developed an integrated protein assay device, "Single Molecule MicroTAS (SMM)," which enables cell lysis, protein extraction, purification, and activity assay. The assay was achieved at the single-molecule scale for a genetically engineered protein, F1-ATPase, which is the smallest known rotary motor. A cell lysis condition, with a wide range of applied voltages (50-250 V) and other optimized values (pulse width: 50 μs; duty: 0.01%; electrode gap: 25 urn; total flow rate: 5 μL min~(-1)) provided a high enough protein concentration for the assay. Successively, the protein was extracted and purified by specific binding in a microfiuidic channel. During the assay process, the diffusion effect of lysate between a two-phase laminar flow contributes to optimizing the single-molecule assay condition, because the concentration of the original lysate from the E. coli solution is too high to assay. To achieve the most efficient assay condition, the protein diffusion effect on the assay was experimentally and numerically evaluated. The results reveal that, in our experimental conditions, concentrations of F1 and other contaminated effluents are optimized for the F1 rotational assay at a channel position. The adenosine triphosphate (ATP)-driven rotation speed measured in the SMM was compatible with that obtained by conventional purification and assay. Such a sequential process from cell lysis to assay proves that the SMM is an example of a sample-in-answer-out system for F1 protein evaluation.
机译:我们开发了一种集成的蛋白质测定设备“单分子MicroTAS(SMM)”,该设备可进行细胞裂解,蛋白质提取,纯化和活性测定。该测定是在单分子水平上完成的,基因工程蛋白F1-ATPase是已知最小的旋转马达。细胞裂解条件,具有广泛的施加电压(50-250 V)和其他优化值(脉冲宽度:50μs;占空比:0.01%;电极间隙:25 urn;总流速:5μLmin〜(- 1))为检测提供了足够高的蛋白质浓度。随后,通过在微流体通道中的特异性结合来提取和纯化蛋白质。在测定过程中,裂解物在两相层流之间的扩散作用有助于优化单分子测定条件,因为来自大肠杆菌溶液的原始裂解物的浓度太高而无法测定。为了达到最有效的测定条件,对蛋白质对测定的扩散作用进行了实验和数值评估。结果表明,在我们的实验条件下,F1和其他受污染废水的浓度已针对通道位置处的F1旋转分析进行了优化。在SMM中测得的由三磷酸腺苷(ATP)驱动的旋转速度与通过常规纯化和测定获得的速度兼容。从细胞裂解到测定的这种连续过程证明SMM是用于F1蛋白评估的进样系统的一个示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号