...
首页> 外文期刊>Lab on a chip >Fundamentals and applications of inertial microfluidics: a review
【24h】

Fundamentals and applications of inertial microfluidics: a review

机译:惯性微流体学的基本原理和应用:综述

获取原文
获取原文并翻译 | 示例

摘要

In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re 1), inertial microfluidics works in the intermediate Reynolds number range (similar to 1 < Re < similar to 100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.
机译:在过去的十年中,惯性微流体技术引起了广泛的关注,并且已经展示了聚焦,浓缩和分离颗粒和流体的多种通道设计。与传统的微流体技术相反,在传统的微流体技术中,流体惯性可以忽略不计,并且流量几乎保持在雷诺数很低(Re 1)的斯托克斯流域内,而惯性微流体则在中等的雷诺数范围内工作(类似于1到100)在斯托克斯和动荡政权之间。在这个中间范围内,惯性和流体粘度都是有限的,并且会产生几种有趣的效应,这些效应构成了惯性微流体的基础,包括(i)惯性迁移和(ii)二次流。由于高通量,简单,精确的操作和低成本的优异特性,惯性微流控技术非常适合用于细胞样品处理,特别是对于靶标含量较低的样品。在这篇综述中,我们首先讨论微通道中粒子的基本运动学,以使读者熟悉惯性微流体系统中的机理和基础物理学。然后,我们将根据惯性微流体系统的微通道结构对它们的最新发展和关键应用进行全面综述。最后,我们讨论了在微流控中应用流体惯性进行粒子处理的观点。由于惯性微流体技术的优越性,这项有前途的技术在不久的将来仍将是一个有吸引力的话题,更多新颖的设计以及在生物学,医学和工业中的进一步应用也将陆续出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号