首页> 外文期刊>Journal of analytical & applied pyrolysis >Experimental and mechanistic study on isothermal oxidative pyrolysis of oil shale
【24h】

Experimental and mechanistic study on isothermal oxidative pyrolysis of oil shale

机译:油页岩等温氧化热解的实验机理研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The reasonable introduction of oxygen to the in situ conversion process of oil shale can effectively reduce energy consumption. However, current studies on oxidative pyrolysis often proceed under non-isothermal conditions with sharp fluctuations in temperature which hinders the accurate determination of the reaction process and the corresponding temperature in the system. In this work, we study the isothermal oxidative pyrolysis behavior of two oil shales differing in total organic carbon (TOC) at constant temperatures. The results indicated that with the increase in reaction temperature, low-temperature oxidative pyrolysis (LTOP) and high-temperature oxidative pyrolysis (HTOP) can be distinguished, where the transition temperature is approximately 340 celcius. During the LTOP, kerogen undergoes low-temperature oxidation, including oxygen addition, isomerization, and decomposition reactions. As for the HTOP, high-temperature oxidation coexists with the pyrolysis of kerogen and the subsequent coke oxidation. The pyrolysis reaction gradually dominates the entire reaction with increasing temperature. Accordingly, a temperature-dependent reaction model of oxidative pyrolysis of oil shale in isothermal conditions was validated and the real-time change in the reaction rates was obtained. Also, oil shale with a higher TOC has a more intense reaction and a higher transition temperature of HTOP and LTOP. This work provides a theoretical basis for the further application of oxidative pyrolysis in oil shale exploitation.
机译:在油页岩原位转化过程中合理引入氧气,可有效降低能耗。然而,目前关于氧化热解的研究通常是在非等温条件下进行的,温度波动剧烈,这阻碍了反应过程和系统中相应温度的准确测定。在这项工作中,我们研究了两种油页岩在恒温下总有机碳(TOC)不同的等温氧化热解行为。结果表明,随着反应温度的升高,可以区分低温氧化热解(LTOP)和高温氧化热解(HTOP),转变温度约为340 c。在 LTOP 过程中,干酪根经历低温氧化,包括加氧、异构化和分解反应。至于HTOP,高温氧化与干酪根的热解和随后的焦炭氧化并存。随着温度的升高,热解反应逐渐主导整个反应。因此,验证了油页岩在等温条件下氧化热解的温度依赖性反应模型,并获得了反应速率的实时变化。此外,TOC较高的油页岩具有更强烈的反应和更高的HTOP和LTOP转变温度。本工作为氧化热解在油页岩开采中的进一步应用提供了理论依据。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号