首页> 外文期刊>Numerical Heat Transfer, Part A. Application: An International Journal of Computation and Methodology >Numerical computations of steady and unsteady, separating, buoyant flows - Part II: Computations with a low-Reynolds-number k-epsilon model
【24h】

Numerical computations of steady and unsteady, separating, buoyant flows - Part II: Computations with a low-Reynolds-number k-epsilon model

机译:稳态和非稳态,分离浮力流的数值计算-第二部分:低雷诺数k-ε模型的计算

获取原文
获取原文并翻译 | 示例
       

摘要

Numerical computation has been performed to determine the influence of buoyant effects on convective flows with the standard k-epsilon and the low-Reynolds-number k-epsilon models. Results obtained with both turbulent models are compared with the available experimental data. In this work, Kolmogorov velocity, u(epsilon) = (vepsilon)(1/4), is introduced instead of shear velocity, u(tau) = roottau(w)/rho, to avoid the singularity that appears at the separating and reattaching point for both turbulence models. Turbulent Prandtl numbers were allowed to vary in the low-Reynolds-number k-epsilon model to mimic the experimental data. Buoyant effects have been investigated with various Richardson numbers for the backward-facing step flow. Various separation patterns as well as vortex shedding were observed beyond a critical Richardson number. In addition, the required grid configration for accurate results for the low-Reynolds-number k-epsilon model has been discussed for the backward-facing step flows. [References: 20]
机译:使用标准kε模型和低雷诺数kε模型进行了数值计算,以确定浮力效应对对流的影响。将两种湍流模型获得的结果与可用的实验数据进行比较。在这项工作中,引入了Kolmogorov速度u(ε)=(vepsilon)(1/4),而不是剪切速度u(tau)= roottau(w)/ rho,以避免在分离和分离时出现奇异性。两种湍流模型的重新连接点。在低雷诺数k-ε模型中允许湍流Prandtl数变化以模仿实验数据。已经用各种理查森(Richardson)数对浮力效应进行了研究,以得出向后的步流。超过临界理查森数,观察到各种分离模式以及涡旋脱落。另外,对于低雷诺数k-ε模型的精确结果所要求的网格配置已针对后向步骤流程进行了讨论。 [参考:20]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号