首页> 外文期刊>Numerical linear algebra with applications >Fast tensor method for summation of long-range potentials on 3D lattices with defects
【24h】

Fast tensor method for summation of long-range potentials on 3D lattices with defects

机译:快速张量法求带有缺陷的3D晶格上远距离电势的总和

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we present a method for fast summation of long-range potentials on 3D lattices with multiple defects and having non-rectangular geometries, based on rank-structured tensor representations. This is a significant generalization of our recent technique for the grid-based summation of electrostatic potentials on the rectangular L x L x L lattices by using the canonical tensor decompositions and yielding the O(L) computational complexity instead of O(L-3) by traditional approaches. The resulting lattice sum is calculated as a Tucker or canonical representation whose directional vectors are assembled by the 1D summation of the generating vectors for the shifted reference tensor, once precomputed on large N x N x N representation grid in a 3D bounding box. The tensor numerical treatment of defects is performed in an algebraic way by simple summation of tensors in the canonical or Tucker formats. To diminish the considerable increase in the tensor rank of the resulting potential sum, the E-rank reduction procedure is applied based on the generalized reduced higher-order SVD scheme. For the reduced higher-order SVD approximation to a sum of canonical/Tucker tensors, we prove the stable error bounds in the relative norm in terms of discarded singular values of the side matrices. The required storage scales linearly in the 1D grid-size, O(N), while the numerical cost is estimated by O(NL). The approach applies to a general class of kernel functions including those for the Newton, Slater, Yukawa, Lennard-Jones, and dipole-dipole interactions. Numerical tests confirm the efficiency of the presented tensor summation method; we demonstrate that a sum of millions of Newton kernels on a 3D lattice with defects/impurities can be computed in seconds in Matlab implementation. The tensor approach is advantageous in further functional calculus with the lattice potential sums represented on a 3D grid, like integration or differentiation, using tensor arithmetics of 1D complexity. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:在本文中,我们提出了一种基于秩结构张量表示的,对具有多个缺陷且具有非矩形几何形状的3D晶格上的远距离电势进行快速求和的方法。这是对我们最近的技术的重大概括,该技术通过使用规范张量分解并产生O(L)的计算复杂度代替O(L-3),对矩形L x L x L格子上的静电势进行基于网格的求和通过传统方法。一旦在3D边界框中的N x N x N大表示网格上预先计算出了结果,则作为结果的晶格和就将作为Tucker或规范表示形式进行计算,其方向矢量是通过偏移参考张量的生成矢量的一维求和来组合的。缺陷的张量数值处理以代数方式通过对标准或Tucker格式的张量进行简单求和。为了减少所得到的潜在总和的张量秩的显着增加,基于广义的归约高阶SVD方案应用了E秩降低过程。为了将高阶SVD逼近到典范/塔克张量之和,我们证明了根据边矩阵的奇异值舍弃后的相对范数的稳定误差范围。所需的存储空间以一维网格大小O(N)线性缩放,而数字成本由O(NL)估算。该方法适用于一类通用的内核函数,包括用于牛顿,斯莱特,汤川,伦纳德·琼斯和偶极-偶极子相互作用的函数。数值测试证实了所提出张量求和方法的有效性。我们证明,在Matlab实现中,可以在几秒钟内计算出3D晶格上具有缺陷/杂质的数百万个牛顿内核的总和。张量方法在进一步的功能演算中具有优势,它使用1D复杂度的张量算术在3D网格上表示晶格势和,例如积分或微分。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号