首页> 外文期刊>Nondestructive Testing and Evaluation >ULTRASONIC ENERGY DISTRIBUTION IN ALUMINIUM SINGLE CRYSTALS
【24h】

ULTRASONIC ENERGY DISTRIBUTION IN ALUMINIUM SINGLE CRYSTALS

机译:铝单晶中的超声能量分布

获取原文
获取原文并翻译 | 示例
       

摘要

Investigation of acoustic fields and elastic energy distribution is one of the most effective methods for defect detection and visualisation. This task of field investigation is now routine in ultrasonic testing but has special features if the materials under study are anisotropic. The elastic anisotropy of single crystals leads to a number of effects complicating the interpretation of the results. For example, if the propagation direction deflects away from the crystallographic axis, the elastic waves spread as two or even three eigenmodes where the directions of the phase and ray velocities do not coincide with one another. The influence of elastic anisotropy manifests itself even if the beam's axis coincides with a high-symmetry direction in the crystal. The lateral rays of the beam in this case are inclined in the relation to the crystallographic axis. The polarisation of these rays differs from the polarisation of the central part of the beam. The elastic energy distribution has to reflect the medium's anisotropy. The specific phenomena occur if the waves propagate near the acoustic axis and if the normal plane to the wave vector is not the plane of mirror symmetry [1]. The inner defect visualisation under crystallographic elastic symmetry conditions has a number of peculiarities. The study of the displacement distribution of elastic waves propagating in aluminium single crystals is the purpose of this paper. Aluminium is chosen as the object of investigation because its elastic properties are well known, and in addition high-purity, high quality single crystals are available. The effect of small beam deflection from the crystallographic axis is studied by the laser interferornetric method [2,3] and the experiments have been carried out when the waves propagate along both the [001] and [111] axes as well along directions close to the [111] axis. Of particular interest is the shear wave energy distribution in connection with the internal conical refraction (ICR) effect [4] if the wave propagates along [111] axis in a cubic crystal. Beyond that point the distortion of the elastic energy distribution caused by the inner defect exposed at the crystal surface has been studied.
机译:声场和弹性能量分布的研究是缺陷检测和可视化的最有效方法之一。现在,现场调查的任务是超声波测试中的常规任务,但是如果所研究的材料是各向异性的,则具有特殊功能。单晶的弹性各向异性导致多种效应,使结果的解释复杂化。例如,如果传播方向偏离晶体轴,则弹性波以两个或什至三个本征模传播,其中相速度和射线速度的方向彼此不重合。即使光束的轴与晶体中的高对称方向重合,弹性各向异性的影响也会显现出来。在这种情况下,光束的侧向射线相对于结晶轴倾斜。这些射线的偏振不同于光束中心部分的偏振。弹性能量分布必须反映介质的各向异性。如果波在声轴附近传播,并且波矢量的法线平面不是镜面对称平面,则会发生特定现象[1]。在晶体学弹性对称条件下的内部缺陷可视化具有许多特性。研究铝单晶中传播的弹性波的位移分布是本文的目的。选择铝作为研究对象是因为铝的弹性特性是众所周知的,此外还可以使用高纯度,高质量的单晶。通过激光干涉法[2,3]研究了小束从结晶轴偏转的影响,并且当波沿[001]和[111]轴以及沿接近[111]轴。如果剪切波在立方晶体中沿着[111]轴传播,则剪切波能量分布与内部圆锥折射(ICR)效应[4]有关。除此之外,还研究了由暴露在晶体表面的内部缺陷引起的弹性能分布的畸变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号